设f(u,v)是二元可微函数,且z=f(y x,x y),求

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:52:09
设f(u,v)是二元可微函数,且z=f(y x,x y),求
设F为三元可微函数,u=u(x,y,z)是由方程F(u^2-x^2,u^2-y^2,u^2-z^2)=0确定的隐函数,求

F对各分量的偏导依次记为F1,F2,F3.方程对x求偏导得F1·(2u·∂u/∂x-2x)+F2·2u·∂u/∂x+F3·2u·∂u/

问两道高数的基础题1.设u,v,f可微,证明:grad(u/v)=(ugrad(v)+vgrad(u))/v^22.设f

第一题见图片第二题好像有点问题fx(1,1,1)不就是f(x,y,z)在点(1,1,1)上x方向的方向导数吗?fx=y^2z^2则在点(1,1,1)上fx=1为什么还要给个方程呢?似乎我还没理解这道题

设u=f(z),而z是由方程z=x+yg(z)确定的函数,其中f,g均为可微函数.证明du/dy=g(z)du/dx.

z=x+yg(z)=>dz/dx=1+yg'(z)dz/dx=>dz/dx=1/(1-yg'(z))dz/dy=g(z)+yg'(z)dz/dy=>dz/dy=g(z)/(1-yg'(z))du/dy

设z=z(x,y)是由方程f(x-az,y-bz)=0所定义的隐函数,其中f(u,v)可微,求对y和对x的偏导数

确定一下题目是否正确,应该求z对x的偏导数吧?f(x-az,y-bz)=0两边对x求偏导得:f₁'(1-a*dz/dx)+f₂'(-b*dz/dx)=0从中解出dz/dx即可d

设f(u,v)为二元可微函数,z=f(x^y,y^x),求x,y的偏导

令u=x^yv=y^xdz/dx=dz/du*du/dx+dz/dv*dv/dx=df/du*y*x^(y-1)+df/dv*lny*y^xdz/dy=dz/du*du/dy+dz/dv*dv/dy=

二元函数偏导数,已知方程f(y/x,z/x)=0确定了函数z=z(z,y),其f(u,v)可微,求az/ax,az/ay

【俊狼猎英】团队为您解答~题目写错了吧,应该是确定了z=z(x,y)其实很简答,先把f(y/x,z/x)=0两边求偏导就可以了,其实就是隐函数求导转化先对x求偏导,得到f'1*(-y/x^2)+f'2

多元函数偏导难题u=f(ux,v+y);v=g(u-x,v^2y)...f,g 可微,求u关于x的偏导及v关于x的偏导

这实际上是隐函数组求偏导数的问题,具体过程见图片.

设二元函数f(x,y)满足丨f(x,y)丨≦x²+y².证明f(x,y)在(0,0)可微.

显然,f(0,0)=0.|f(x,y)-f(0,0)-0|=o(||(x,y)||),所以f在(0,0)可微,微分为0.

设z=(x,y)是方程F(y/x,z/x)=0所确定的隐函数,其中函数F(u,v)可微分,证明

令y/x=ε,z/x=η.F(y/x,z/x)=F(ε,η)=0,记Fx,Fy,Fz分别表示对x,y,z求偏导;Fε,Fη分别表示对ε,η求偏导Fx=Fε*d(y/x)/dx+Fη*d(z/x)/dx

设函数f (e^x十x^e)’f(u)关于变量u可导i,求dy/dx

(e^x)'=e^x,(x^e)'=e*x^(e-1),dy/dx=f'(e^x十x^e)*[e^x+e*x^(e-1)]

多元函数微积分设f(u,v)为可微分足够次的函数,试按r的方幂将函数 F(r)=(1/2π)∫(0,2π) f(x+r*

f(x+rcost,y+rsint)=f(x,y)+af/ax*rcost+af/ay*rsint+0.5(a^2f/ax^2*(rcost)^2+2a^2f/axay*(r^2costsint)+a

设二元函数 z=u^2,u=x+y v=x-y ,求dz/dx,dz/dy

dz/dx=dz/du*(du/dx)=2u*1=2udz/dy=dz/du*(du/dy)=2u*1=2u和v没关系

设z=f(u),方程u=g(u)+∫ (上限x.下限y)p(t)dt确定u是x,y的函数,其中f(u),g(u)可微,p

想办法变换就行了,EASY再问:能详解一下吗?再答:上网没带笔,用画图工具算。如图,第一行是已知条件。第二行同时取负号,积分上下限交换第三行同时对上面式子求相应导数,注意与求解结果一致第四行继续对原来

二元函数f(x,y)是否可微?

不能推出可微对x偏导lim【f'(x,0)-f'(0,0)】=0x->0可知,fx'(x,y)在(0,0)处作为一元函数连续(沿着X轴那根线上连续)对y偏导lim【f'(0,y)-f'(0,0)】=0

设y=u^v,u,v是x的可导函数,证明:dy/dx=u^v(v/u*du/dx+lnu*dv/dx)

y=u^v,则lny=lnu^v,lny=vlnu,求导有:y'/y=v'lnu+vu'/u,y'=y(v'lnu+vu'/u),其中,y=u^v,y'=dy/dx,v'=dv/dx,u'=du/dx