设D是由曲线Y=(2 3)x^3 2,x=1,y=0所围成的图形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:26:04
设D是由曲线Y=(2 3)x^3 2,x=1,y=0所围成的图形
设y=y(x)是由方程xy+e^y=y+1所确定的隐函数,求d^2y/dx^2 x=0

xy+e^y=y+1(1)求d^2y/dx^2在x=0处的值:(1)两边分别对x求导:y+xy'+e^yy'=y'y/y'+x+e^y=1(2)(2)两边对x再求导一次:(y'y'-yy'')/y'^

考研题 设函数y=y(x)由参数方程x=t^2+2t y=ln(1+x)确定,则曲线y=y(x)在x=3处的法

首先你的题目应该有点错误,应该是y=ln(1+t)吧.先求y=y(x)在x=3处的导数:y'=dy/dx=(dy/dt)/(dx/dt)=[1/(1+t)]/(2t+2)=1/[2(1+t)^2],当

设函数y=y(x)是由方程cos(xy)=x+y所以确定的隐函数,求函数曲线y=y(x),过点(0,1)的切线方程

cos(xy)=x+y两边微分,得dx+dy-sin(xy)*(x*dy+y*dx)=0dx(1-ysin(xy))+dy(1-xsin(xy))=0dy/dx=(ysin(xy)-1)/(1-xsi

求教一道高数题,设D是由曲线y=√x,x+y=2和x轴所围成的平面区域,求D绕y轴旋转一周而成的旋转体的体积V

先画图,求曲线交点是(1,1),旋转完后,你想象一下做许多垂直于y轴的平行平面去截旋转体,得到的每个平面面积都是可求的,其实就是求平行截面为已知图形的物体体积.作x轴平行线y=y0交原平面图行于两点,

如题:设L是由曲线y^3=x^2与直线y=x连接起来的正向闭曲线,计算 (x^2)ydx+y^2dy的曲线积分(积分符号

设C是由曲线y³=x²与直线y=x连接起来的正向闭曲线,计算∮x²ydx+y²dy的曲线积分C:y=x^(2/3),y=x;区域D:由曲线C所围的区域;P=x&

设L是曲线y=x的平方+3在点(1,4)处的切线,求由该曲线,切线L及y轴围成的平面图形的面积S?(求大神帮助!急)

导数为2x,在1点值为2,L斜率为2.得到L的方程2x-y+2=0,与x轴交点为(1,0)作直线x=2,可算区边梯形面积减去三角形面积区边梯形积分上下限为0,2积分函数是y结果是17/3,三角形面积为

设曲线x=x(t),y=y(t)由方程组x=te^t e^t+e^y=2e 确定,求该曲线在t=1处的曲率k.答案是k=

汗,参数方程的曲率啊,直接代公式就可以了再问:是的不假,但是我怎么算的都是答案的3背呢,多个常数倍数3……我就绕进去出不来了…………再答:也许是答案错误了。再问:………………汗…………因为之前有过类似

设D是由曲线y=lnx, x=e和x轴所围成的平面图形, (1)求D的面积A, (2)求D绕x轴旋转所形成的旋转体的体积

1.S=∫(1,e)lnxdx=[xlnx-x](1到e)=(e*lne-e)-(1*ln1-1)=12.V=∫(1,e)π(lnx)²dx=[x(lnx)^2-2xlnx+2x](1到e)

设随机变量(X,Y)在平面区域D上服从均匀分布,其中D是由直线y=x和曲线y=x^2所围成的区域,求(X,Y)的边缘概

设(X,Y)的联合密度函数f(x,y)=a(x,y)∈D首先有概率完备性知1=∫∫f(x,y)dxdy=∫∫adxdy=a∫(0,1)dx∫(x^2,x)dy=a/6所以a=6.(X,Y)的联合密度函

计算二重积分∫∫xydσ 其中D是由曲线y=x 2及直线x=1,y=0轴围成的闭区域

{y=x²、y=0{x=1∫∫xydxdy=∫[0→1]dx∫[0→x²]xydy=∫[0→1]x*[y²/2]:[0→x²]dx=∫[0→1]x/2*x

设i是曲线y=x²+3在点(1,4)处的切线,求由该曲线,切线l及y轴围成的平面图形的面积

y '=2x所以在点(1,4)切线的斜率k=y'=2×1=2故切线i 为y-4=2(x-1),得y=2x+2由y=2x+2和y=x²+3联立解得交点(1,

设D是由曲线y=lnx与其过原点的切线及x轴围成的区域,D绕x轴旋转一周所成旋转体的体积是?

是公式但是至于怎么推到出来的你把曲线化为空间曲线再三重积分就行至于积分怎么积没有普遍方法你这题用换元也可以不过我一般会用分步积分至于过程简单写下分步法:∫(lnx)^2dx=(lnx)^2*x-∫2l

计算∫∫(D)x^2ydxdy,其中D是由曲线xy=1,y=√x,x=2围成的平面区域

可以X型或Y型方面计算将二重积分化为普通定积分计算即可若是X型,先计算对y的定积分,后对x若是Y型,先积分对x的定积分,后对y若是Y型的话需要分段,因为积分区间中有两条曲线的交接.

求e^y^2的二重积分,其中D是第一象限内由直线y=x,和曲线y=x^(1/3)围成的闭区域

交点为(0,0)和(1,1).先对x积分后对y积分,积分区域是0

设平面图形由曲线y=x2,x=y2围成,求

(1)由于曲线y=x2,x=y2的交点为(0,0),因此以x为积分变量,得图形的面积为:(S=∫10(x−x2)dx=(23x32−13x3)|10=13(2)旋转体的体积:Vx=π∫10((x)2−

设平面区域D由曲线y=1x

区域D的面积为:SD=∫e20dx∫1x0dy=∫e211xdx=lnx|e21=2,所以(X,Y)的联合概率密度为:f(x,y)=12  (x,y)∈D0