设c是正向圆周|z|=2,求积分cosz (z-1)^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:21:08
设c是正向圆周|z|=2,求积分cosz (z-1)^2
请教斯托克斯公式.∫L yzdx+3zxdy-xydz,其中L为圆周x^2+y^2=4y,3y-z+1=0,从z轴正向看

请教斯托克斯公式.10-离问题结束还有14天11小时∫Lyzdx+3zxdy-xydz,其中L为圆周x^2+y^2=4y,3y-z+1=0,从z轴正向看,L为逆时针方向.我觉得cosb=3/sqrt(

求一个复变函数的积分设C为正向圆周|z|=1,求 Z+Z的共轭复数 在C上的积分.怎么求?不好意思,题目贴错了是求 1/

解:设Z=x+yi,z'=x-yiz+z'=2xu(x,y)=2x,v(x,y)=0所以积分:(|Z|=1)(z+z')dz=积分;(|z|=1)2xdx+i积分:(|z|=1)2xdyx=cost,

设z∈C,Z是z的共轭复数,且z(2+i)为纯虚数,z*Z=20,求复数z

教你五颗星的方法.设z=a+bi,Z=a-bi,(a+bi)*(2+i)=2a-b+(a+2b)i.因为是纯虚数,所以2a-b=0,所以2a=b,所以z=a+2ai又因为z*Z=20.且Z=a-2ai

求∮[z^3/(1+z)]*e^(1/z)dz,c为正向圆周|z|=2

答案见附图 说明:这是复变函数的环路积分,第一式子的积分是科希定理,可以查阅数学物理方法或复变函数的书籍.

计算∫c(z^2-e^zsinz)dz其中C是圆周|Z|=1的正向拜托各位了 3Q

妈啊,我怎么一个字都不认识啊.完了,真的是菜鸟了.

求复变积分∫C(e^z/z)dz 其中C:|z|=1为正向圆周

柯西积分公式原式=2πie^z|z=0=2πi希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,

复变函数求∮dz/(z+2)(z-1),其中C:|z|=4为正向

答案在图片上,点击可放大.

如图,设积分路线C是由点z=-1到z=1的上半单位圆周,则积分等于

圆周方程为z=e^(iθ)θ从-π到π原式=∫[-π-->π](e^(iθ)+1)/e^(2iθ)*ie^(iθ)dθ=i∫[-π-->π](e^(iθ)+1)/e^(iθ)dθ=i∫[-π-->π]

设L为取正向的圆周x²+y²=9,求曲线积分∮(2xy-2y)dx+(x²-4x)dy的值

用参数方程呗,x=3cost,y=3sint,t从0到2π,结果是-18π再问:什么叫做正向的圆周啊再答:就是逆时针,t从0到2π

某一匀强磁场磁感应强度是B,方向沿z轴正向,其中AB=a,BE=b,EF=c,求: 

答案0;Bbc;Bbc(1)磁感应强度的方向与ABCD表面平行,所以磁通量为0.(2)磁感应强度垂直于BCEF表面,面积为S=bc,磁通量Φ=BS=Bbc.(3)ADEF表面在垂直于磁感应强度方向的投

已知c是正向圆周|z|=1,则e^(1/z)的微积分是多少

这么久了,不知道你有没有解出来,中午看到了这个题,看了一下书,我们对这门课要求不高,发现这个题确实没思路;想了老半天,等我看了洛朗级数这一节的,突然想这个题应该是用这个知识点,不知道你这个题是不是出自

∮t ydx+zdy+xdz,其中t为圆周x^2+y^2+z^2=a^2,x+y+z=0,从x 轴正向看去,t为逆时针方

记曲面∑为平面x+y+z=0上以t为边界的圆,其半径是a.取上侧.由斯托克斯公式,∮tydx+zdy+xdz=-∫∫dydz+dzdx+dxdy,∑的法向量是(1,1,1),3个方向余弦都是1/√3,

复变函数与积分的问题 设C为正向圆周|ζ|=2,f(z)=∮[sinπ/6*ζ /(ζ-z)^2]dζ 则f'(z)=_

题目打错了吧,f‘(z)怎么会是一个常数,肯定要带点下去才对

设z的共轭复数是Z,若z+Z=4,z*Z=8,求Z/z

设z=a+bi,Z=a-bi∵z+Z=2a=4∴a=2∵z*Z=a^2+b^2=8∴b^2=4,b=±2①当z=2+2i,Z=2-2i时Z/z=(1-i)/(1+i)=-i②当z=2-2i,Z=2+2

柯西定理 设c是正向圆周|z|=2,则∮1/z(z^2-1)dz

1/[z(z^2-1)]=z/(z^2-1)-1/z=1/2[1/(z-1)+1/(z+1)]-1/z剩下的就自己完成吧

∫C (yx^3+e^y)dx+(xy^3+xe^y-2y)dy,其中C为正向圆周x^2+y^2=a^2

用Green公式:∫CPdx+Qdy=∫∫D(aQ/ax--aP/ay)dxdy=∫∫D(y^3+e^y--x^3--e^y)dxdy=∫∫D(y^3--x^3)dxdy对称性积分区域D关于x,y轴都

计算积分∮c :z的共轭复数/|z|dz的值,其中c为正向圆周|z|=2

令z=re^(iθ),则z共轭=re^(-iθ),dz=rie^(iθ)dθ,|z|=r,所以积分=∮rdθ,这里r=2,所以积分=2∮dθ(积分限0到2π)=4π

设L为取正向圆周的X^2+Y^2=1,求∫(-y)dx+xdy

设P(x,y)=-yQ(x,y)=x那么αP/αy=-1αQ/αx=1根据格林公式(不会自己去查)原式=∫∫[(αQ/αx)-(αP/αy)]dxdy=∫∫2dxdy=2π