设C为正向圆周|z|=1 (1 z z的共轭)dz

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:49:55
设C为正向圆周|z|=1 (1 z z的共轭)dz
请教斯托克斯公式.∫L yzdx+3zxdy-xydz,其中L为圆周x^2+y^2=4y,3y-z+1=0,从z轴正向看

请教斯托克斯公式.10-离问题结束还有14天11小时∫Lyzdx+3zxdy-xydz,其中L为圆周x^2+y^2=4y,3y-z+1=0,从z轴正向看,L为逆时针方向.我觉得cosb=3/sqrt(

求一个复变函数的积分设C为正向圆周|z|=1,求 Z+Z的共轭复数 在C上的积分.怎么求?不好意思,题目贴错了是求 1/

解:设Z=x+yi,z'=x-yiz+z'=2xu(x,y)=2x,v(x,y)=0所以积分:(|Z|=1)(z+z')dz=积分;(|z|=1)2xdx+i积分:(|z|=1)2xdyx=cost,

求∮[z^3/(1+z)]*e^(1/z)dz,c为正向圆周|z|=2

答案见附图 说明:这是复变函数的环路积分,第一式子的积分是科希定理,可以查阅数学物理方法或复变函数的书籍.

计算∫c(z^2-e^zsinz)dz其中C是圆周|Z|=1的正向拜托各位了 3Q

妈啊,我怎么一个字都不认识啊.完了,真的是菜鸟了.

设w= f(z) =z+h,h=1+i,G={z z =1}为单位圆周,试求G′ =f(G).

设w=f(z)=z+h,h=1+i,G={zz=1}为单位圆周,试求G′=f(G).解为了求G′,其想法(思路)中最容易想到的是,设法求出G′中点所遵循的规律,然后,由此规律再去分析G′是怎样的集合.

1.设z属于c,且z的模=1,z的平方-z+1=1,求z

设Z=a+bi(a,b属于R)z的模=1所以a的平方+b的平方=1z的平方-z=0所以a的平方-b的平方-a+(2ab-b)i=0{a的平方-b的平方=0{2ab-b=0{a的平方+b的平方=1三个一

求复变积分∫C(e^z/z)dz 其中C:|z|=1为正向圆周

柯西积分公式原式=2πie^z|z=0=2πi希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,

复变函数求∮dz/(z+2)(z-1),其中C:|z|=4为正向

答案在图片上,点击可放大.

设z∈C且|z-i|=|z-1|则复数z在复平面上的对应点Z(x,y)的轨迹方程是?|z+i|的最小值为?)

设Z=x+y*i,代入|z-i|=|z-1|,|x+(y-1)i|=|(x-1)+y*i|,两边平方,得x^2+(y-1)^2=(x-1)^2+y^2,解得,y=x.即Z的实部与虚部相等.∴Z(x,y

如图,设积分路线C是由点z=-1到z=1的上半单位圆周,则积分等于

圆周方程为z=e^(iθ)θ从-π到π原式=∫[-π-->π](e^(iθ)+1)/e^(2iθ)*ie^(iθ)dθ=i∫[-π-->π](e^(iθ)+1)/e^(iθ)dθ=i∫[-π-->π]

已知c是正向圆周|z|=1,则e^(1/z)的微积分是多少

这么久了,不知道你有没有解出来,中午看到了这个题,看了一下书,我们对这门课要求不高,发现这个题确实没思路;想了老半天,等我看了洛朗级数这一节的,突然想这个题应该是用这个知识点,不知道你这个题是不是出自

设z为纯虚数,且/z-1/=/-1+i/求复数z

设z=bi|z-1|=√2|bi-1|=√2√(b^2+1)=√2b^2+1=2b^2=1b=正负1故z=正负i

复变函数与积分的问题 设C为正向圆周|ζ|=2,f(z)=∮[sinπ/6*ζ /(ζ-z)^2]dζ 则f'(z)=_

题目打错了吧,f‘(z)怎么会是一个常数,肯定要带点下去才对

柯西定理 设c是正向圆周|z|=2,则∮1/z(z^2-1)dz

1/[z(z^2-1)]=z/(z^2-1)-1/z=1/2[1/(z-1)+1/(z+1)]-1/z剩下的就自己完成吧

计算积分∮c :z的共轭复数/|z|dz的值,其中c为正向圆周|z|=2

令z=re^(iθ),则z共轭=re^(-iθ),dz=rie^(iθ)dθ,|z|=r,所以积分=∮rdθ,这里r=2,所以积分=2∮dθ(积分限0到2π)=4π