设a是正定矩阵,b是实反对称矩阵,则a b的行列式大于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 11:01:43
设a是正定矩阵,b是实反对称矩阵,则a b的行列式大于0
设A是实可逆对称矩阵,B是反对称矩阵且AB=BA证明A+B是可逆矩阵

写出A的实对称分A=QDQ^T,Q正交,D对角,且D=diag(a1E,...,akE),ai是互不相同的特征值.对应的B分块,AB=BA知道对应的Q^TBQ是块对角阵,每一个对角块都是反对称的,而a

设实矩阵A是正定矩阵,证明:对于任意正整数 Ak也是正定矩阵

A为正定则特征值全为正A=P*[v1..*P^-1vn]A^k=P*[v1^k..*P^-1vn^k]v1^k..vn^k也是正数即A^k的特征值全为正所以A^k也是正定矩阵

设A是反对称矩阵,B是对称矩阵,证明A的平方是对称矩阵;AB-BA是对称矩阵

A=-A^t,B^t=BA^2=(-A)^t(-A)^t=(A^2)^t所以A^2为对称矩阵(AB-BA)^t=(AB)^t-(BA)^t=B^tA^t-A^tB^t=B(-A)+AB=AB-BA所以

有关于矩阵对称和反对称的证明题 :设A是反对称矩阵,B是对称矩阵.证明:

由已知,A'=-A,B'=B所以有1.(AA)'=A'A'=(-A)(-A)=AA=A^2故.2.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA.故.3.AB是

设实矩阵A是正定矩阵,证明:对于任意正整数 Ak也是正定矩阵,

Ak是A的k次方?A的特征值是λ则A^K的特征值是λ^k(这个是常用结论)A是正定矩阵则A所有特征值>0λ^k>0所以A^K的特征值也全都大于0所以A^k是正定矩阵

设A是n阶对称矩阵,B是n阶反对称矩阵,则下列矩阵中反对称矩阵为:

选B由题目得:A'=A,B'=-B;因此选项A:(BAB)'=B'A'B'=BAB选项B:(ABA)'=A'B'A'=-ABA剩下的两个你自己分析一下吧,我得去吃饭了,别忘了(AB)'=B'A',顺序

设A,B均是n阶正定矩阵,证明A+B是正定矩阵

转置符号用'代替说明首先,第一步(A+B)’=A‘+B’=A+B所以A+B是对称矩阵其次,任取x≠0根据正定定义x‘Ax>0.x‘Bx>0.于是x’(A+B)x=x‘Ax+x‘Bx>0所以A+B是正定

求助已知A是n阶正定矩阵,B是n阶反对称矩阵,证明A-B^2也为正定矩阵.

对非零列向量xBx是一个列向量则(Bx)'(Bx)>=0[这里要求B是实矩阵--线性代数默认]这是内积的非负性(一个性质),原因:设Bx=(a1,...,an)'则(Bx)'(Bx)=a1^2+...

设A是对称矩阵,B是反对称矩阵,证明A∧(-1)B∧2-B∧2A∧(-1)是反对称矩阵

A是对称矩阵,则A^{-1}对称,再利用定义可证(A∧(-1)B∧2-B∧2A∧(-1))^T=-(A∧(-1)B∧2-B∧2A∧(-1))

如果A是n阶正定矩阵,B是n阶实反对称矩阵,证明 A-BTB是 正定矩阵.

yajun宝贝,由反对称矩阵定义知有B=-B^T,于是A-B^TB=A+B^2,由正负矩阵的定义有X^TAX>0,于是X^T(A-B^TB)X=X^TAX-X^TB^TBX=X^TAX+(B^TX)2

设A ,B均为正定矩阵,则__ a.AB是正定矩阵,b.A+B是正定矩阵 c.A-B是正定矩阵 d.|A|=|B|

B因为A,B均为正定矩阵所以对于任意的XX'AX>0X'BX>0所以X'(A+B)X=X'AX+X'BX>0根据X任意性(A+B)是正定的

设A为m阶正定矩阵,B是m*n实矩阵,且R(B)=n,证明B'AB也是正定矩阵

首先证明任取n维列向量x≠0,Bx≠0因为R(B)=n,所以存在B的n级子式不为0,不妨设B前n行构成的子式|B1|不为0,则若B1x=0必有x=0,矛盾.所以B1x≠0,所以Bx≠0.这样因为A正定

设A,B均是n阶实对称矩阵,且A是正定矩阵,B是半正定矩阵,证明|A+B|>|B|

前两天看你问过,一个人答了,估计没看懂,我也没看懂,我就用比较浅显的知识给你证明吧,高深的我也不会.哈哈!

已知A是实反对称矩阵,证明I-A^2为正定矩阵

这用到一个结论:实反对称矩阵的特征值是零或纯虚数所以I-A^2的特征值为1或1-(ki)^2=1+k^2>0所以I-A^2是正定矩阵

设A是n阶对称矩阵,B是n阶反对称矩阵,证:3A-B的平方是对称矩阵

由已知,A'=A,B'=-B.所以(3A-B)^2'=(3A-B)'(3A-B)'=(3A+B)(3A+B)呵呵结论不对!

设A,B是n阶正定矩阵,则AB是:A.实对称矩阵.B.正定矩阵.C.可逆矩阵.D.正交矩阵

这个(C)正确因为A,B正定所以|A|>0,|B|>0所以|AB|=|A||B|>0所以AB可逆.

设A是反对称矩阵,B是对称矩阵,证明:(1)A²是对称矩阵,(2)AB-BA是对称矩阵

(1)(A²)^T=(A^T)²=(-A)²=A²所以A²是对称矩阵;(2)(AB-BA)^T=(AB)^T-(BA)^T=B^TA^T-A^TB^T

关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为

1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值

a是反对称矩阵 b实对称矩阵 证明a^2实对称矩阵

因为A为反对称矩阵则A=-A^T(A^2)^T=(A^T)2=(-A)(-A)=A^2是实对称矩阵再问:a是反对称矩阵b实对称矩阵证明:(1)ab-ba是对称矩阵?(2)ab是反对称矩阵的充分必要条件

设A为n阶对称矩阵,B是n阶反对称矩阵,证明AB为反对称矩阵的充分必要条件是AB=BA

证明:若AB为反对称矩阵,则(AB)T=-AB=(-1)AB,已知A为n阶对称矩阵,则A=AT,B是n阶反对称矩阵,则BT=-B,而根据转置矩阵的重要性质(AB)T=BTAT=-BA=(-1)BA,(