设A是正定矩阵 存在可逆矩阵U 使得A=UTU

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:55:42
设A是正定矩阵 存在可逆矩阵U 使得A=UTU
设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵

终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是

设实矩阵A是正定矩阵,证明:对于任意正整数 Ak也是正定矩阵

A为正定则特征值全为正A=P*[v1..*P^-1vn]A^k=P*[v1^k..*P^-1vn^k]v1^k..vn^k也是正数即A^k的特征值全为正所以A^k也是正定矩阵

试证明:实对称矩阵A是正定矩阵的充分必要条件是存在可逆矩阵P,使A=PTP

A正定,则存在正交阵Q和对角元全是正数的对角阵D,使得A=Q^TDQ,记C是对角元是D的对角元的平方根的对角阵,即D=C^2=C^TC,于是A=Q^TC^TCQ,P=CQ是可逆阵.反之,A=P^TP,

设A是一个 阶可逆实矩阵.证明,存在一个正定对称矩阵S和一个正交矩阵U,使得

提示:是正定对称矩阵.于是由习题2存在正定矩阵S,使得=.再看一下U应该怎样取.]

设实矩阵A是正定矩阵,证明:对于任意正整数 Ak也是正定矩阵,

Ak是A的k次方?A的特征值是λ则A^K的特征值是λ^k(这个是常用结论)A是正定矩阵则A所有特征值>0λ^k>0所以A^K的特征值也全都大于0所以A^k是正定矩阵

设A十一n阶实可逆矩阵,证明:存在一个正定矩阵S和一个正交阵P,是A=PS

对A做奇异值分解A=USV^T,那么P=UV^T,S=VSV^T即为所求

A,B为正定矩阵,C是可逆矩阵.证明A-B为是对称矩阵.

你的题目有问题啊,C用不上?A,B正定,他们的差不一定对称啊.比如A=(101;210)B=(100,4;1,101)

证明A为正定矩阵的充要条件是存在可逆矩阵U,使A=U'U

如果A=U'U,则A'=(U'U)'=U'U=A,故A是对称的,对任意非零x,由U可逆,Ux也非零,由x'Ax=x'U'Ux=(Ux)'(Ux)>0,故A是正定矩阵.充分性得证.如果A为对称正定矩阵,

设实矩阵A是可逆矩阵,证明 是正定矩阵

设实矩阵A是正定矩阵,证明:对于任意正整数Ak也是正定矩阵,A的特征值是λ则A^K的特征值是λ^k(这个是常用结论)A是正定矩阵则A所有特征值>0λ^k>0所以A^K的特征值也全都大于0所以A^k是正

若A是正定矩阵,C是可逆矩阵,证明:C(转置)*A*C是正定矩阵

证明:任意非0向量V,因为C可逆,所以,存在X,使得:C*V=X(因为:X是下面方程的C^(-1)*X=VC^(-1)满RANK,所以总是可解出X)则:V(转)*C(转)*A*C*V=X(转)*A*X

设A为正定矩阵,则下列矩阵不一定为正定矩阵的是

正定矩阵的特征值ai>0A^T,A+E,A^-1,A-2E的特征值分别为ai,ai+1,1/ai,ai-2所以只有A-2E的特征值可能为负值所以A-2E不一定正定

设A,B是n阶正定矩阵,则AB是:A.实对称矩阵.B.正定矩阵.C.可逆矩阵.D.正交矩阵

这个(C)正确因为A,B正定所以|A|>0,|B|>0所以|AB|=|A||B|>0所以AB可逆.

设AB均是n阶实对称矩阵,其中A正定,证明存在实数t使tA+B是正定矩阵

这个证明很容易,AB为n阶实对称阵,均可对角化.设A的特征值为λ1,λ2,λ3.λn,其中λi均>0(A是正交矩阵,特征值均大于0)另设B的特征值为λ1‘,λ2’,λ3‘.λn’tA+B的特征值φ(λ

有关正定矩阵的问题设A为n阶对称矩阵,证明:A满秩的充要条件是存在实矩阵B,使AB+B-TA为正定矩阵.

对A用对称阵的规范型来作.再问:它分成了两项,怎么弄到一起额再答:-》如果A满秩,取B=A《-反证法。如果A不满秩,假定A本身就具有规范型。A的规范型中有0,这样AB+BTA,有零对角元素,不可能是正

证明设矩阵A是正定矩阵,证明A-1次方也是正定矩阵

你说的是A的逆吧.A的特征值全为正,A逆的特征值都为A特征值的倒数,所以也全为正,所以正定.再问:�ܲ���˵˵ȫ���

设A,B分别是n,m阶实对称矩阵,且B是正定矩阵.证明,存在m*n非零矩阵H,使B-HAH'成为正定矩阵.

证明B是m阶实对称矩阵,则B特征值均为正式实数,且对任意m维向量x,0b1x'x-(b1/am)×amx'x>0,故B-HAH'成为正定矩阵.

设A为可逆矩阵,试征;ATA为正定矩阵

证明:对任一n维非零向量X因为A可逆,所以AX≠0.所以X^T(A^TA)X=(AX)^T(AX)>0[内积的非负性][这里用到A是实矩阵的条件]所以A^TA是正定的.

正定矩阵可逆?

正定的充分必要条件是其顺序主子式全大于0若A正定,必有|A|>0故A可逆.

为什么矩阵A正定,就存在可逆矩阵C.

有个定理是:正定矩阵合同于单位阵再答:那句话就是这个定理的数学语言