设A是n阶正交矩阵,证明:对任意n维列向量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:14:00
设A是n阶正交矩阵,证明:对任意n维列向量
线性代数题目,设A是n阶正交矩阵,且det(A)<0,证明:det(A+E)=0

因为det(A)<0,所以正交矩阵的特征值是正负1,所以A+E的特征值是0和2,所以A+E的行列式=0你要知道的就是正交矩阵的特征值只可能是1或-1,若正交阵A地特征值是λ,则A的转置的特征值也为λ,

设A为n阶实对称矩阵,若A的平方等于E,证明A是正交矩阵

正交矩阵定义:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵对称矩阵A'=A所以A方=E,命题成立

设a是n维列向量,A为n阶正交矩阵,证明||Aa||=|a|

证:因为A为正交矩阵,所以A^TA=E(单位矩阵)从而||Aa||=√(Aa)^T(Aa)=√a^TA^TAa=√a^Ta=||a||再问:||a||?==√a^Ta这是为什么再答:不谢,那是公式。

设A为n阶实矩阵,证明A是正交矩阵当且仅当对任意的n维向量α,β有(Aα,Aβ)=(α,β)

(α,β)=β^Tα,(Aα,Aβ)=β^TA^TAα  显然当A是正交阵的时候(Aα,Aβ)=(α,β)  反过来,令M=A^TA,M是一个对称阵  取α=β=e_i得到M(i,i)=1,这里e_i

n阶矩阵A既是正交矩阵又是正定矩阵 证明A是单位矩阵

楼上的想法不对吧,你只说明了矩阵A是一个对角矩阵,并且可能是单位阵的倍数,不能说明A是单位阵,要说明单位阵,除了说明:“正交矩阵表明A^(-1)=A',正定矩阵表明A合同于E,即A=C'EC,所以A^

设A是n阶实对称矩阵,A^2=A,证明存在正交矩阵.

由于A是对称矩阵,因此存在正交矩阵T使得T^(-1)AT为对角矩阵,其中对角线上的元素为A的所有特征值,因此只要证A的特征值只有0和1即可由于A^2=A,所以A的特征是0或1,证毕

线性代数问题:设A是n阶反对称矩阵,证明(E-A)(E+A)^(-1)是正交矩阵.

证明:记B=(E-A)(E+A)^-1注意到(E-A)(E+A)=E-A^2=(E+A)(E-A)和A^T=-A,有B^TB=((E+A)^-1)^T)(E-A)^T(E-A)(E+A)^-1=((E

证明“若A为n阶正交阵,则其伴随矩阵A*也一定是正交矩阵.”

知识点:(A*)^T=(A^T)*因为A是正交的,所以A^TA=E(或AA^T=E)所以(A^TA)*=E*所以A*(A^T)*=E所以A*(A*)^T=E所以A*是正交矩阵.

设A为n阶矩阵,证明A为正交阵的充分必要条件是A*为正交阵

A为正交阵当且仅当A的逆为正交阵(这个结论应该都讲过,不用证了吧……要证的话也很简单),A*=|A|乘以A的逆,得证.

设α为n维列向量,E为n阶单位矩阵,证明A=E-2αα^T/(α^Tα)是正交矩阵

证明:因为A=E-2αα^T/(α^Tα)所以A^T=E^T-2(αα^T)^T/(α^Tα)=E-2αα^T/(α^Tα)所以AA^T=[E-2αα^T/(α^Tα)][E-2αα^T/(α^Tα)

设A,B是n阶正交矩阵,且|A|/|B|=-1,证明|A+B|=0

因为A,B为正交矩阵,所以┃A┃┃A+B┃=┃A’┃┃A+B┃=┃E+A’B┃=┃B’B+A’B┃=┃B’+A’┃┃B┃=┃A+B┃B┃=-┃A┃┃A+B┃.所以┃A┃┃A+B┃=0.所以┃A+B┃=

设A是n阶是对称矩阵,并且A^2=A.证明存在正交矩阵C,使

证明:A为实对称矩阵,则币可以对角化,令Aa=xa则A^2=Ax^2a^2=xax(x-1)a=0a≠0,x=0,1则A矩阵的特征值只能为0,1所以r(A)=r(Λ)=特征值非0的个数所以必存在可逆矩

设A,B都是n阶的正交矩阵,证明A的伴随矩阵A*也是正交矩阵

AA^T=A^TA=E,A^(-1)=A^T|A|^2=1,|A|=1.-1A*=|A|A^(-1)=A^T或者-A^TA*=A^T时,A*(A*)^T=A^T(A^T)^T=A^TA=EA*=-A^

正交矩阵的性质A是n阶正交矩阵,证明A*也是正交矩阵结果如下:由于A为正交矩阵,所以|A|^2=1,A^-1也是正交矩阵

|A|表示A的行列式,行列式是能计算出来的,是一个具体的数哦,所以这里|A|是当一个常数一样得提出来做乘积,当然不需要做转置.

已知A是n阶正交矩阵,A*是A的伴随矩阵,证明A*是正交矩阵.

detA=1ordetA=1A*A=EorA*A=-EA*=A^TorA*=-A^TA*^T=AorA*^T=-A,A*^TA*=A*A*^T=E所以:A*是正交矩阵.再问:看不懂。。它中间那个or要

线性代数问题:设A是n阶反对称矩阵,证明(E+A)^(-1)(E一A)是正交矩阵.

上面的是相乘的还是分开的证明两个呢再问:相乘的再答:那么令上述的矩阵为B,只要验证B^T*B=E就好了B^T=((E+A)^(-1)(E一A))^T=(E一A)^T*((E+A)^-1)^T其中(E一

设A是正交矩阵,证明A^*也是正交矩阵

由于A为正交矩阵,所以|A|^2=1,A^-1也是正交矩阵,((A^-1)^T(A^-1)=(A^T)^-1(A^-1)=(AA^T)^-1=E^-1=E),所以(A*)^TA*=(|A|A^-1)^