设A是n阶方阵,若对任意的n维向量x均满足Ax=0则

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:47:32
设A是n阶方阵,若对任意的n维向量x均满足Ax=0则
设A是n阶方阵,且(A+E)的平方=O,证明A可逆

(A+E)的平方=OA²+2A+E=OA(A+2E)=-EA(-A-2E)=E所以有定义可知A可逆.

证明n阶方阵A为正交矩阵的充要条件是对任意n维列向量a都有|Aa|=|a|

充分性:如果A=βα,那么r(A)再问:不懂,怎么和秩联系了呢再答:采纳我,我加你qq再问:不理解再答:我加你qq,现在把我选为满意答案,谢谢

设A是n阶方阵,其秩r

对再答:行秩等于列秩等于矩阵的秩再答:行向量组的秩是它最大线性无关组中向量的个数

设A*表示n阶方阵A的伴随矩阵,证明 1.(λA)*=λ^n-1A*对任意数λ成立 2.(AB)*=B*A*,对任意同阶

1.|λA|的元素的余子式Mij每行可提出一个λ因子,故有λ^n-1A*2.当A,B可逆时,用公式A*=|A|A^-1即可证明当A,B不可逆时,参考3.n>2时若A可逆,AA*(A*)*=A|A*|E

几代:设α是n维列向量(n > 1),则n阶方阵A = ααT 的行列式|A|的值为?

1+xa≠0,可以知道aa'(a‘表示转置)也不会为0,而r(aa')<=r(a)<=1这说明aa‘的秩为1.这样aa'的特征值正好是n-1个0,有一个不

设A矩阵与任意n阶方阵可交换,怎样求矩阵A

真巧,我刚做过这道题\x0d\x0d请看图片:\x0d\x0d

设A是n阶方阵,若存在n阶方阵B不等于0,使AB=0,证明R(A)小于n.

因为B≠O(矩阵),所以存在B的一列b≠0(列向量)因为AB=0,所以Ab=0即齐次线性方程组AX=0存在非零解,所以R(A)

设矩阵A与任意n阶方阵可交换,求A

A是标量矩阵(即一个常数再乘以单位阵)证明很简单,把A设出来,=(aij)然后分别让它和Eij可交换(Eij是ij位置上为1,其余全为0的矩阵)再两边作比较就可以了

设A是n阶方阵,若存在n阶非零方阵B,使得AB=BA=B,则A=E.为什么是错的?

因为矩阵B不一定可逆,如果B可逆,则由AB=B两边左乘B^(-1)就得到A=E,但是现在不知道B是否可逆,只能得到AB-B=O,即(A-E)B=O,而我们知道如果AB=O,不一定有A=O或B=O成立,

证明:设A是一个n阶方阵,如果对任一个n维向量x,都有Ax=0,那么A=0

证法一由于有关系式(A的秩)+(Ax=0的解空间维数)=n现在依照题意,Ax=0的解空间是整个空间,即(Ax=0的解空间维数)=n所以A的秩是零,因此A=0证法二(反证)设A≠0,则A的某个元素a(i

设A是n阶方阵,a是n维列向量,若对某一自然数m,有A^(m-1)a不等于0,A^ma=0,证明向量组a,Aa,.,A^

设k1a+k2,Aa+,.+km,A^(m-1)a=0①①左乘A^﹙m-1﹚k1A^﹙m-1﹚a=0A^﹙m-1﹚a≠0∴k1=0①成为k2,Aa+,.+km,A^(m-1)a=0②②左乘A^﹙m-2

设A是n阶方阵,且A的平方等于A,证明A+E可逆

假设A+E不可逆,则|A+E|=0所以-1是A的一个特征值设ξ是属于-1的一个特征向量则A^2ξ=A(-ξ)=-Aξ=ξ但A^2=A所以A^2ξ=Aξ=-ξ矛盾

线性方程组证明设A是n阶方阵,Ax=0只有零解,求证,对任意正整数k,A^kx=0(A的k次方x)也只有零解

Ax=0只有零解所以|A|不等于0而|A^k|=|A|^k不等于零所以A^kx=0只有唯一解,就是零解

设n阶方阵A的n个特征值互异,n阶方阵B与A有相同的特征值,证明:A与B是相似的?

因为A的n个特征值互异所以A可对角化,且A相似于对角矩阵diag(a1,...,an)又因为n阶方阵B与A有相同的特征值所以B也可对角化,且B相似于对角矩阵diag(a1,...,an)由相似的传递性

设A是(n≥2)阶方阵,A*是A的伴随矩阵.证明:

1)r(A)=n等价于det(A)≠0等价于det(A*)=1等价于A*可逆等价于r(A*)=n2)

若n阶方阵A满足A^T=-A,则对任意n维向量a均有a^TAa=0 为什么

a^TAa是一个数,则a^TAa=[a^TAa]^T=a^tA^Ta=-a^TAa,2aTAa=0,得a^TAa=0.

设A、B为任意n阶方阵,且BA=A+B,则AB=

BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB

设A是n阶方阵,若对任意的n维向量X均满足AX=0则A=0?

不对是|A|≠0由已知AX=0只有零解,这等价于|A|≠0.再问:刘老师早上好,答案就是A=0再答:不好意思我搞反了是所有的X,AX=0此时,基础解系应该含n个向量所以n-r(A)=n所以r(A)=0