设a为秩为3的5*4矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 03:25:09
R(A*)=1因为R(A)=3,所以A*不为0矩阵,所以R(A*)>=1AA*=|A|E=0所以R(A)+R(A*)
伴随矩阵的秩加原矩阵的秩=n所以是1
秩为0因为4阶矩阵A的秩为2,所以它的三阶子式一定全为0,(否则秩会为3)既然三阶子式全为0,那么按照伴随矩阵的定义:它的元素全为0,即为0矩阵.故秩为0
无选项,a=3/2再问:写错了,第二行是2a2,不好意思啊再答:
(A*) = 0.
由于C可逆,所以r(AC)=r(A)即有r=r1故(C)正确.
证:首先(A^TA)^T=A^T(A^T)^T=A^TA故A^TA是对称矩阵.又对任一非零列向量x由r(A)=n知AX=0只有零解所以Ax≠0再由A是实矩阵,所以(Ax)^T(Ax)>0即x^T(A^
首先,因为(A'A)'=A'(A')'=A'A,所以A'A是对称矩阵.又对任一非零向量X,由于r(A)=n,所以AX≠0.(否则AX=0有非零解)所以X'(A'A)X=(AX)'(AX)>0.所以A'
2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值
啊哈,我就做做看,不知道对不对呐,高等代数学的不是很好.d=A的模=1/2,A的模乘以A^-1的模=E的模=1,A^-1=1/dA*,所以原式等于3A^-1-2(dA-1)=2A^-1=2乘以2=4
两个矩阵相乘有意义的条件是:前一个矩阵的列数等于后一个矩阵的行数例如:A[m*n]B[n*k]=C[m*k]即m行n列矩阵乘以n行k列矩阵得到m行k列矩阵所以由上得知,C行数等于A列数等于4(AC有意
|AA*|=|A||A*|=||A|E||;//现在都是数了,不是矩阵了,所以可以用代数方法做了|A|=3是数,E是单位矩阵(也是上三角行列式),那么||A|E|=3*3*3*3=81;//上三角行列
A的伴随阵的秩只有三种情况.rA=n时,rA*=n;rA=n-1时,rA*=1;rA
证:对任一n维向量x≠0因为r(A)=n,所以Ax≠0--这是由于AX=0只有零解所以(Ax)'(Ax)>0.即有x'A'Ax>0所以A'A为正定矩阵.注:A'即A^T
AA*=|A|E,∴A*=2A^-1由于A为3阶矩阵,∴|-2A*|=|-4A^-1|=(-4)^3×1/2=-32.再问:那请问这样|-2A*|=(-2)^3|A*|=(-2)∧3|2A^-1|=(
A为3×4矩阵,B为2×3矩阵ABC无意义选(D)
由于(3A)−1=13A−1,AA*=|A|E=12E,因此|(3A)-1-2A*|=|A||A||(3A)-1-2A*|=2|A(13A−1−2A*)|=2|13E−2•12E|=2|−23E|=2
这里是用到了矩阵秩的不等式R(BA)≤min{R(B),R(A)}即BA的秩小于等于A和B中秩较小的一个那么显然在这里A的秩一定小于等于3,所以当然可以得到R(BA)≤3,不管B的秩是多少
若m×n阶矩阵A的秩为R(A),则Ax=0的解空间维数为n-R(A).所以本题解空间的维数为6-4=2维.
秩为四啊[A]不等于零,就是满秩四阶,就是四