设A为方阵,2为A的特征值,则A平方有一个特征值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:59:01
设A为方阵,2为A的特征值,则A平方有一个特征值为
设3阶方阵A的特征值为-1 2 -3,则A‘的特征值为

A*=A的行列式乘以A的逆=(-1乘以2乘以-3)乘以A的逆=6倍的A逆3阶方阵A的特征值为-12-3,A逆的特征值为-1,1/2,-1/3,所以A*的特征值为-6,3,-2

设3阶方阵A的特征值为-1、1、2,则B=A3次方-2A2次方的特征值为

设g(x)=x^3-2x^2由定理知g(-1)=-3,g(1)=-1,,g(2)=0是g(A)=B的特征值满意请采纳^_^

设3阶方阵A的特征值为1、2、3,则B=A^2-A 的特征值为 解题思路是什么.

A的特征向量都是B的特征向量A*a1=a1则B*a1=A^2*a1-A*a1=(1-1)a1=0A*a2=2a2B*a2=A^2*a2-A*a2=(2^2-2)a2=2a2A*a3=3a3B*a3=A

设N阶方阵A的特征值为λ,证明:2A+E(E为n阶单位阵)的特征值为2λ+1

设λ对应的A的特征向量为x,则Ax=λx,那么(2A+E)x=2Ax+x=2λx+x=(2λ+1)x,由特征值定义可知2λ+1是2A+E关于特征向量x的特征值

线性代数!谢谢!设3阶方阵A的特征值为3,2,4,则A^(-1)的特征值为?

A^-1的特征值是A的特征值的倒数:1/3,1/2,1/4再问:这是真的吗==这么简单

设A为N阶方阵,A的m次方=0,m是自然数,则A的特征值为

A的m次方的特征值=A的特征值的m次方,故先求A的m次方的特征值.既然A的m次方=0,0矩阵的特征值当然是0,故A的m次方的特征值为0.故A的特征值=0.

设λ 是n阶方阵A的特征值,证明:Α+2E的特征值为λ+2.

λ是n阶方阵A的特征值,则:Ax=λx,其中x是λ对应的特征向量.考察(A+2E)x(A+2E)x=Ax+2Ex=λx+2x=(λ+2)x所以Α+2E的特征值为λ+2,同时可以看到,对应的特征向量不变

设可逆方阵A的特征值为2,则 的特征值为

题目没写全吧再问:则KA-1的特征值为,不好意思,谢谢您了再答:结果应该是2K-1过程设x是特征值2的特征向量Ax=2x则kAx=2kx则kAx-x=2kx-x即(kA-1)x=(2k-1)x所以,k

方阵的特征值问题:设A为3阶方阵,A的三个特征根为1,2,3,则|A^2-4A|=?

A的特征值是1,2,3则A^2的特征值是1^22^23^2即1494A的特征值是4*14*24*3即4812A^2-4A的特征值是1-44-89-12即-3-4-3则|A^2-4A|=(-3)*(-4

设A可逆,方阵的特征值为λ,E-A^(-1)的特征值是多少

若λ是A的特征值,且A可逆则1/λ是A^-1的特征值(定理)所以1-1/λ是E-A^-1的特征值再问:为什么1-1/λ是E-A^-1的特征值呢?再答:E-A^-1是A^-1的多项式有定理:f(λ)是f

设λ为方阵A的特征值,证明λ²是A²的特征值.

(用c代替lambda)c是特征值,则存在非零向量x使得cx=Ax,于是A^2x=A(Ax)=cAx=c^2x,c^2是A^2特征值

设3阶方阵A的3个特征值为2,-4,3 则A*的A 3个特征值为()

由3阶方阵A的3个特征值为2,-4,3知|A|=2*(-4)*3=-24.若a是A的特征值,则|A|/a是A*的特征值.所以A*的特征值为-24/2,-24/(-4),-24/3即-12,6,-8所以

设方阵A的每列元素之和均为a,则A必有一个特征值为?

必有一个特征值为a.事实上|A-rE|=0中把其余各行都加到第一行,你会发现第一行每个元素都成了a-r,当r=a时行列式为0,这说明r=a是行列式的一个根,即a是一个特征根.

4、设4阶方阵A 的4个特征值为3,1,1,2,则 |A|=

方阵的行列式等于其所有特征值之积所以|A|=3x1x1x2=6

设3阶方阵A的3个特征值为1 2 3则|2A²+3E|等于

/>设f(x)=2x²+3则f(1)=5,f(2)=11,f(3)=21.因为A的特征值是1,2,3所以A²+3E的特征值为5,11,21所以|A²+3E|=5×11×2

证明:设n阶方阵A满足A^2=A,证明A的特征值为1或0

设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a=a

设A为3阶方阵,特征值分别为-2,,1,则| 5A-1 |=

第二个特征值如果是0,则结果为44