设A为三阶方阵 且|A|=3,求|{1 2A}^2|}的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:07:10
设A为三阶方阵 且|A|=3,求|{1 2A}^2|}的值
设A为三阶方阵,且|A|=-3,求|-3A|

|-3A|=(-3)^3*|A|=(-3)^4=81

关于线性代数的问题设A为三阶方阵,|A|=6,λ1 =2 ,λ2 =-3①求λ3 ;②求A的逆方阵的特征值?;③求A伴随

(1)利用矩阵A的行列式等于其所有特征值的乘积:|A|=λ1λ2λ3即知λ3=-1.(2)逆矩阵的特征值就是原矩阵特征值的逆,所以A的逆矩阵的特征值为1/2,-1/3,-1.(3)用A*表示A的伴随.

设A为4阶方阵,A*为A的伴随矩阵,且/A*/=8,求/A/

利用关系式|A*|=|A|^(n-1),可得知|A|=2.经济数学团队帮你解答,请及时采纳.

线性代数:设A为n级方阵,且|A|=2求|-3A|

|kA|=k^n|A|所以|-3A|=(-3)^n|A|=2*(-3)^n

设A为3阶方阵,|A|=1/2,求|(2A)^(-1) - 3A*|

因为A*=|A|A^(-1)=(1/2)A^(-1)所以|(2A)^(-1)-5A*|=|(1/2)A^(-1)-(5/2)A^(-1)|=|(-2)A^(-1)|=(-2)^3|A^(-1)|=-8

老是我想问个问题:设A为三阶方阵,a11≠0,且aij=λAij,求|A|

由已知,λA*=A^T因为a11≠0,所以λ≠0所以A*=(1/λ)A^T由AA*=|A|E得AA^T=λ|A|E(1)两边取行列式得|A|^2=λ^3|A|^3(2)比较两边矩阵第一行第一列元素得a

设A为N阶方阵,且A-E可逆,A^2+2A-4E=0,求A+3E的逆方阵

将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1

设A为三阶方阵,已知A有两个特征值-1.-2,且(A+3E)的秩为2,求A+4E的行列式

因为r(A+3E)=2所以|A+3E|=0所以-3是A的特征值所以A的全部特征值为-1,-2,-3所以A+4E的特征值为(λ+4):3,2,1所以|A+4E|=3*2*1=6.

设A为n阶方阵,且A=A^2;,则(A-2E)^-1

A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E

设A为三阶方阵,且|A|=2,A*为A的伴随矩阵,|3A*|=?

A*=|A|A^(-1)=2A^(-1)由|A|=2知|A^(-1)|=1/2|3A*|=|6A^(-1)|=6³|A^(-1)|=6³×1/2=108A^(-1)表示A的逆矩阵

一道线性代数题..设A为三阶方阵,且E-2A,E+2A及E-3A的秩都小于3,证明A可逆并求|E+6A|和|2E+A^-

由题意,|E-2A|=|E+2A|=|E-3A|=0,所以2,-2,3是A的特征值.A是三阶方阵,有三个特征值,所以2,-2,3是A的所有特征值.|A|=2×(-2)×3=-12≠0,所以A可逆.E+

设 /A/为三阶方阵,且已知/A/=-2 ,则/3A /的值为多少

3A是在每个矩阵元素上乘以3,这样在计算行列式时,由于每个元素是原来的3倍,所以一个n阶方阵的行列式的值变为原来的3^n倍.在本题中,n=3,所以/3A/=3^3*(-2)=-18说的详细点,行列式是

设A 为三阶方阵且|A|=-2,则|3A²|=?

因为|kA|=k^3|A|,所以|3A²|=3^3*|A|²=9*(-2)²=9*4=36.

设A为三阶方阵,且|A+E|=|A+2E|=|2A+3E|=0,则|2A*-3E|=?

左边的连等式我们可以求出A的三个特征值-1,-2,-3/22A*的特征值是6,3,42A*-3E的特征值是3,0,1,所以2A*-3E的行列式是其三个特征值的乘积,所以是0.

设A为三阶方阵,且A的平方等于0,怎样求A的秩和A的伴随矩阵的秩

A为三阶矩阵A^2=0则2r(A)《3r(A)《1r(A)=0,1若r(A)=0,则r(A*)=0若r(A)=1〈(n-1)=2,则r(A*)=0再问:2r(A)《3为什么啊再答:定理,AB=0,则R

设A为三阶方阵,且|A|=-2,求|-2A|

|-2A|=(-2)^3*|A|=(-2)^4=16

设A,B均为三阶方阵,且|A|=4,B=3E,则|-2A^(-1)B^T|=?

层层层层层层层层层层层层层层层层层层层层层层层层层层白布包白布包白布包白斑病本报