设A为三阶方阵 1 3a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:05:33
设A为三阶方阵 1 3a
设A为三阶方阵,且|A|=-3,求|-3A|

|-3A|=(-3)^3*|A|=(-3)^4=81

设A为三阶方阵,其特征值分别为1,2,3,则|A^_1-E|=?

应该是|A^-1-E|吧,由题,|A^-1-E|=|A^-1-A*A^-1|=|(E-A)*A^-1|=|E-A|*|A^-1|,因为1是A的特征值,所以有|E-A|=0,所以|E-A|*|A^-1|

设矩阵A=【】,求一秩为2的三阶方阵B使AB=0

AB=0,即B的每一列均为AX=0的解,现在对AX=0求解——对A进行初等行变换得112,从而满足x1+x2+2x3=0的解均为所求解.000000得AX=0的全部解为u(1,-1,0)+v(2,0,

设A为n阶方阵,证明当秩(A)

这个很简单啊,r(A)

设A为三阶方阵,已知A有两个特征值-1.-2,且(A+3E)的秩为2,求A+4E的行列式

因为r(A+3E)=2所以|A+3E|=0所以-3是A的特征值所以A的全部特征值为-1,-2,-3所以A+4E的特征值为(λ+4):3,2,1所以|A+4E|=3*2*1=6.

设A为三阶方阵,|A|=1/2则|(2A)^(-1)-(2A)*|求过程,答案是-27/4

对可逆矩阵B,B*=|B|·B^(-1).因此(2A)*=|2A|·(2A)^(-1)=2³|A|·(2A)^(-1)=4(2A)^(-1).于是|(2A)^(-1)-(2A)*|=|-3(

设A为三阶方阵,且|A|=2,A*为A的伴随矩阵,|3A*|=?

A*=|A|A^(-1)=2A^(-1)由|A|=2知|A^(-1)|=1/2|3A*|=|6A^(-1)|=6³|A^(-1)|=6³×1/2=108A^(-1)表示A的逆矩阵

设A为三阶方阵,行列式|A|=2,A*是A的伴随矩阵,则|(A/4)^-1+A*|=? 求过程,在线等```

A*=|A|A^-1=2A^-1(A/4)^-1=4A^-1所以|(A/4)^-1+A*|=|4A^-1+2A^-1|=|6A^-1|=6^3|A^-1|=6^3/2=108

设 /A/为三阶方阵,且已知/A/=-2 ,则/3A /的值为多少

3A是在每个矩阵元素上乘以3,这样在计算行列式时,由于每个元素是原来的3倍,所以一个n阶方阵的行列式的值变为原来的3^n倍.在本题中,n=3,所以/3A/=3^3*(-2)=-18说的详细点,行列式是

设A 为三阶方阵且|A|=-2,则|3A²|=?

因为|kA|=k^3|A|,所以|3A²|=3^3*|A|²=9*(-2)²=9*4=36.

设A为三阶方阵,且|A+E|=|A+2E|=|2A+3E|=0,则|2A*-3E|=?

左边的连等式我们可以求出A的三个特征值-1,-2,-3/22A*的特征值是6,3,42A*-3E的特征值是3,0,1,所以2A*-3E的行列式是其三个特征值的乘积,所以是0.

方阵性质证明问题设AB为n阶方阵,证明|AB|=|A||B|

我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们

设A为三阶方阵,且|A|=-2,求|-2A|

|-2A|=(-2)^3*|A|=(-2)^4=16

设A为三阶方阵,A1,A2,A3表示A三个列向量,则A的行列式等于?

设A1=[a11a21a31]T;A2=[a12a22a32]T;A3=[a13a23a33]T;则A的行列式为:-a13a22a31+a12a23a31+a13a21a32-a11a23a32-a1

设a,b均为n阶方阵,则必有

这是个定理或性质.它的证明比较繁琐,若学过Laplace展开还好一点.记住这个结论就行了,不必深究它的证明!

A为三阶方阵,A=(A1,A2,A3)

A1,A2,A3是矩阵A的3个列向量,关系其实你已经写出来了,就是A=(A1,A2,A3)或者你也可以写成A=(A1,O,O)+(O,A2,O)+(0,0,A3)|3A1,A2,3A3|为什么可以把两