设A为n阶矩阵,且每一行

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:30:31
设A为n阶矩阵,且每一行
设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵

证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#

设n阶方阵A的行列式为a,且每一行元素之和为b(b不为0),则A的第n列元素的代数余子式子之和是多少?最好有图.

把第1到第n-1列均加到第n列,则第n列全为b,将b提出并按第n列展开,可得行列式=b(1A1n+1A2n…+1Ann)=a,所以A的第n列元素代数余子式之和为a/b举个三阶行列式的例子:A=1230

设A为m*n矩阵,B为k*n矩阵,且r(A)+r(B)

设一分块矩阵C上块为A下块为BCx=0的解就是Ax=0与Bx=0的公共解r(C)

设A,B为n阶矩阵,且A为对称矩阵,证明B^TAB也是对称矩阵

首先,你应该知道下面几条:1).一个矩阵为对称矩阵,则此矩阵等于他的转置矩阵.因此,由条件A为对称矩阵,可知A=A^T2).要证明B^TAB是对称矩阵,就是要证明此矩阵等于他的转置矩阵,即证明B^TA

设A,B均为n阶矩阵.证明:分块矩阵AB BA是可逆矩阵当且仅当A+B A-B均为可逆矩阵

利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.

设A,B为n阶矩阵且A+B=E,证明:AB=BA

AB=A(E-A)=A-AABA=(E-A)A=A-AA所以AB=BA

设A,B均为n阶矩阵,且AB=BA求证r(A+B)

这个比较麻烦,要借助向量空间的维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A,B均为n阶矩阵,且AB=BA,证r(A+B)

不是这个稍等再问:额,不是这道题啊再答:这个要借助空间维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

两道线性代数题1、设A为n阶矩阵,且每一行元素之和都等于常数a,证明A^m(m为正整数)的每一行元素之和为a^m.2、设

详细的答案过程在我空间相册里请点链接:http://hi.baidu.com/%CE%C4%CF%C9%C1%E9%B6%F9/album/item/d5e677008dcb0951728b6581.

设矩阵A和P都是n阶矩阵,且A为对称矩阵,证明:P^TAP也是对称矩阵

再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力

设A为n阶矩阵,且每一行元素之和都等于常数a,证明A^m(m为正整数)的每一行元素之和为a^m.

由已知,A^T(1,1,...,1)^T=a(1,...,1)^T即a是A^T的特征值,(1,...,1)^T是A的属于特征值a的特征向量所以a^m是(A^T)^m的特征值,(1,1,...,1)是(

已知3阶实对称矩阵A每一行的和均为3,且其特征值均为正整数,|A|=3,求矩阵A

因为3阶实对称矩阵A每一行的和均为3所以3是A的一个特征值,(1,1,1)'是A的属于特征值3的特征向量又因为|A|=3是A的所有特征值的乘积而A的特征值均为正整数所以A的特征值为3,1,1.由实对称

已知3阶实对称矩阵A每一行的和均为3,且其特征值均为正整数,|A|=3,求矩阵A.

提示:3对应的特征向量是[1,1,1]',另外两个特征值都是1,特征向量与[1,1,1]'正交.

设A为M*N矩阵,且M

AA'对称显然,M*M.正定任意的M维非零向量x,有x'AA'x=(A'x)'(A'x)大于零.rankA=M注:任意的M维非零向量x,有x'AA'x=(A'x)'(A'x)大于等于零.A'x是N维向

设A,B为n阶矩阵,且A为对称矩阵,证明:BTAB也是对称矩阵.

由已知AT=A故(BTAB)T=BTATB=BTAB故它是对称矩阵

设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则(  )

(1)对于选项A.若λE-A=λE-B,则:A=B,但题目仅仅是A与B相似,并不能推出A=B,故A错误;(2)对于选项B.相似的矩阵具有相同的特征值,这个是相似矩阵的性质,这是由它们的特征多项式相同决

设A为n阶矩阵,且每一行元素之和为a,证明A^m的每一行元素之和为a^m

每一行元素之和为a则A(1,1...1)T=a(1,1...1)T所以A^m(1,1...1)T=a^m(1,1...1)T即A^m的每一行元素之和为a^m(1,1...1)T是个列向量,每个元素都是

设A是n阶可逆矩阵 若A的每一行元素之和为c 求证A^-1每一行元素之和1/c

证明:设x=(1,1,...,1)^T.由已知A的每一行元素之和为c所以Ax=(c,c,...,c)^T=cx.所以A^-1Ax=cA^-1x即x=cA^-1x所以A^-1x=(1/c)x.--注:因