设A为n阶矩阵,且A²-A=2E证明A可对角化

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:15:55
设A为n阶矩阵,且A²-A=2E证明A可对角化
证明题:设A为n阶矩阵,且A^2-A=2E.证明A可对角化.

这道题在不同的阶段可以有不同的方法.如果学了Jordan标准型和矩阵的最小多项式,可以用:矩阵可对角化的充要条件是其最小多项式无重根(即Jordan块都是1阶的).由A²-A=2E,知x&#

设A为n为阶矩阵,且A^2+3A=0,3A^2+A=0,则A的行列式det(A)=?

设B=A^2,那么B+3A=0,3B+A=0,解得A=0,B=0,所以|A|=0.再问:Ϊʲô�����ҳ�A^-1��������������0���������AA^-1=E再答:�϶����ˣ�

同问设A为n阶矩阵,且|A|=2,则|3A^-1-2A*|=

可以|A||1/3A^-1-2A*|=|1/3AA^-1-2AA*|=|1/3E-2|A|E|=|1/3E-4E|=(1/3-4)^n原题是什么?3阶的?(3A)^-1最后结果再除|A|即可再问:对不

设A为n阶矩阵,且A不是零矩阵,且存在正整数k≥2,使A^k=0,证明:E-A可逆,且(E-A)=E+A+A^2+……A

由性质直接证明因为(E-A)(E+A+A^2+……+A^(k-1))=E+A+A^2+……+A^(k-1)-A-A^2-……-A^(k-1)-A^k=E-A^k=E所以E-A可逆,且(E-A)^(-1

设A为n阶矩阵,且满足A^2=A ,则下列命题中正确的是( ) 为什么

D,很显然A=I和O时等式都满足,所以A,B都不对,至于C显然矩阵1000满足,但是它不是OD只要在等式两侧同时乘以A得逆矩阵就可以得到

设A是数域F上一个n阶方阵,且A^2=A(A为幂等矩阵)

证明:(1)因为A^2=A所以(A+I)A-2(A+I)=-2I所以(A+I)(A-2I)=-2I所以A+I可逆,且(A+I)^-1=(-1/2)(A-2I).(2)是要证r(A)+r(I-A)=n吧

设n阶矩阵A的秩为1,证明A^2=tr(A)A

知识点:r(A)=1的充要条件是存在n维非零列向量α,β,使得A=αβ^T.所以有A^2=(αβ^T)(αβ^T)=α(β^Tα)β^T=(β^Tα)αβ^T=tr(A)A.

设A为n阶矩阵,且|A|=2,则|3A^-1-2A*|=

因为A*=|A|A^-1=2A^-1所以|3A^-1-2A*|=|3A^-1-4A^-1|=|-A^-1|=(-1)^n|A|^-1=[(-1)^n]/2

设A,B均为n阶矩阵,且AB=BA求证r(A+B)

这个比较麻烦,要借助向量空间的维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A,B均为n阶矩阵,且AB=BA,证r(A+B)

不是这个稍等再问:额,不是这道题啊再答:这个要借助空间维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A为n阶方阵,且|A|=2,A*为A的伴随矩阵,则|A*|=?

设B为A的伴随矩阵,E为单位阵,AB=|A|E,|A||B|=|A|^n,|B|=|A|^(n-1)

设矩阵A和P都是n阶矩阵,且A为对称矩阵,证明:P^TAP也是对称矩阵

再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力

设A为n阶矩阵,若已知|A|=m,求|2|A|A^t|,

|A|=m,|2|A|A^t|=|2mA^t|,因A为n阶,则|2mA^t|=(2m)^n|A^t|,又|A^t|=|A|=m,|2mA^t|=(2m)^n|A^t|=(2m)^(n+1)/2再问:貌

设A为n阶矩阵,且|A|=2,则|3A^-1-2A*|=?

A*A=AA*=|A|I从而A*=|A|A﹣¹3A﹣¹-2A*=3A﹣¹-2|A|A﹣¹=-A﹣¹|-A﹣¹|=(-1)^n|A﹣¹

设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵

设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-

设n阶矩阵A的伴随矩阵为A* 证明:|A*|=|A|^(n-1)

大家都不帮你我来帮你因为AA*=|A|E,两边同时乘A逆,有A*=|A|A逆,两边同时取行列式,有|A*|=||A|A逆|=|A|^(N)|A逆|又因为|A逆|=|A|分之一(这个就不用给你推了吧.A

设N阶矩阵A可逆,A*为A的伴随矩阵,试证A*也可逆,且(A*)逆矩阵=1/[A]乘以A 万分感激

AA*=!A!E不等于0故:A*可逆.A*A/!A!=E(A*)^(-1)=A/!A!!表示绝对值.