设A为n阶实矩阵,且满足AA^T=E,|A|
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:46:17
E+A^T=(E+A)^T两边取行列式|E+A^T|=|(E+A)^T|=|E+A|再问:甚妙甚妙!!!非常感谢!这个题我明白了。但是这个题里面A^T=A这个式子能不能成立呢?也就是说,已知AA^T=
设n阶矩阵A,B满足AB=aA+bB.其中ab不等于0,证明AB=BA.证:以下记单位矩阵(幺阵)为E.由已知得(A-bE)(B-aE)=abE0两边求行列式,均不为零,故det(A-bE)0,故A-
假设 λ 为A的特征值,因为A3+A2+A=3E,所以 λ3+λ2+λ-3=0.即 (λ3-1)+(λ2-1)+(λ-1)=0,得(λ-1)(λ2+2λ+3)=0.解得,
这题目怪怪的由|2E+A|=0可知A必有一个特征值-2前面那些条件又是在干什么?奇怪!
A'是A的转置吧根据矩阵乘法定义,AA'的第i行第j列元素等于A的第i行和A'的第j列(也就是A的第j行的转置)的积.所以AA'第i个对角线上的元素是A的第i个行向量和自己转置后点乘的结果,也就是自己
因为AA*=|A|I=2I所以|AA*+2I|=|4I|=4^n|I|=4^n.再问:这个I是什么东西?再答:是单位矩阵
AA'=E,是吧等式两边取行列式得|A|^2=1因为|A|
D,很显然A=I和O时等式都满足,所以A,B都不对,至于C显然矩阵1000满足,但是它不是OD只要在等式两侧同时乘以A得逆矩阵就可以得到
AA^T=E,|A|×|A^T|=|A|^2=1,|A|=1或-1.|A|<0,所以|A|=-1.A+E=A+AA^T=A(E+A^T)|A+E|=|A|×|E+A^T|=|A|×|A+E|=-|A+
证:如果r(A)
A-E=A-AA^T=A(E-A^T)=A(E-A)^T,两边取行列式,得|A-E|=|A|×|(E-A)^T|=|E-A|=(-1)^n×|A-E|=-|A-E|所以,|A-E|=0
R(A)=n-1,首先可以确定,A的基础解系所含的解向量个数是n-(n-1)=1个那么就很简单了,找一个向量,代入AX=0可以使之成立就行了.利用题目的暗示,这个向量可能是a我们试一试代入AX=0(E
|A-E|=|A-AA^T|=|A(E-A^T)|=|A|*|E-A^T|=|(E-A^T)^T|=|E-A|=(-1)^n|A-E|=-|A-E|所以2|A-E|=0|A-E|=0
两侧的括号省略设A=abbca,bc均为实数.A^2=AA=ababbc乘bc按定义:AA=a^2+b^2ab+bcab+bcb^2+c^2由已知:A^2=0,即各元素均为0.得:a^2+b^2=0,
首先,A是正交阵.因此行列式为+1或-1,由题目要求,有|A|=-1其次,A伴随/|A|=A的逆=A^T故A伴随=-A^T因此A的特征值的相反数就是A伴随的特征值根据你的修改,我做出一些修改这个题出的
设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-
A^2=AA^2-A-2E=-2E(A-2E)(A+E)=-2E(2E-A)(A+E)=2E|2E-A||A+E|=2^n现在求|A+E|的值A是实对称阵,必可相似对角化,存在可逆阵P,使得P^(-1
这是一个基本公式,AA*=A*A=|A|E,其中E是单位阵.经济数学团队帮你解答,请及时采纳.
AA'=AA,取两边转置有A'A=A'A',即A(A'-A)=0,-A'(A'-A)=0.两式相加有-(A'-A)^2=0,则A=A'