设A为m阶正定阵,B为m×n矩阵,证明B
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:48:38
证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=
OK 这个有图片 请点击看大图
一定要分析特征值的话可以这样.首先由A为实矩阵,且B'=λE'+(A'A)'=λE+A'A=B,可知B为实对称阵.因此B的特征值均为实数,要证明B正定,只需证明其特征值均大于0.设b是B的一个特征值,
首先需要说明kA+lB是对称的,这是因为(kA+lB)'=kA'+lB'=kA+lB,然后对于任意的x不等于0,有x'(kA+lB)x=kx'Ax+lx'Bx>0(因为A,B均正定),得证.
首先,因为(A'A)'=A'(A')'=A'A,所以A'A是对称矩阵.又对任一非零向量X,由于r(A)=n,所以AX≠0.(否则AX=0有非零解)所以X'(A'A)X=(AX)'(AX)>0.所以A'
用定义很明显A^TA半正定,但是不可能证明正定,除非A满秩且m
1.A'记作A的转置A'=(P'BP)'=P'B'PB为m阶对称正定阵,即B'=B所以A'=P'BP=A,即A是对称的.2.r维非零向量x,x'Ax=x'(P'BP)x=(Px)'B(Px)因为R(P
若r(A)=n,注意Ax=0的充分必要条件是x=0.则对任意的非零x,有Ax非零,于是x^TA^TAx=(Ax)^T(Ax)>0,故A^TA正定.反之,设A^TA正定.若r(A)0,所以B^tAB为正
首先证明任取n维列向量x≠0,Bx≠0因为R(B)=n,所以存在B的n级子式不为0,不妨设B前n行构成的子式|B1|不为0,则若B1x=0必有x=0,矛盾.所以B1x≠0,所以Bx≠0.这样因为A正定
1、因为A*A'('表示转置)为n*n的矩阵,而一个矩阵的秩必≤它的行数或列数,所以r(A*A')≤n可以直接得到.2、需要说明的是,r(n)中的n是什么?你可能看错了,一个数是不必算秩的(一个非0数
正定的充分必要条件是所有特征值为正,故可如图证明.经济数学团队帮你解答,请及时采纳.谢谢!
任取非零向量α=(α1,α2,...αn),存在非零向量β=(β1,β2...βn),使得α'β=I,则有β'α=I因为A-B正定,则有α(A-B)α'>0,则αAα'>αBα'由A,B正定得A逆,B
1、当m为偶数时,A^m=[A^(m/2)]'[A^(m/2)]为正定阵2、当m为奇数时,A^m=A^((m-1/)2)AA^((m-1)/2)=[A^((m-1/)2)]'AA^((m-1)/2)=
B^TAB正定等价于对于任意n×1的非零矩阵x有x^TB^TABx>0,即(Bx)^TA(Bx)>0.注意A正定,因此当Bx≠0时(Bx)^TA(Bx)>0,但Bx=0时(Bx)^TA(Bx)=0,即
只需证明齐次线性方程组B^TABx=0(1)与Bx=0(2)同解.显然(2)的解是(1)的解对(1)的解x,有x^TB^TABx=0即(Bx)^TA(Bx)=0由于A正定,故Bx=0所以(1)的解也是
1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值
证:对任一n维向量x≠0因为r(A)=n,所以Ax≠0--这是由于AX=0只有零解所以(Ax)'(Ax)>0.即有x'A'Ax>0所以A'A为正定矩阵.注:A'即A^T
(M'AM)'=M'A'M=M'AM,故M'AM是对称的,对任意非零x,由M可逆,Mx也非零,再由A为正定矩阵得x'M'AMx=(Mx)'A(Mx)>0,故M'AM是正定矩阵.
利用定义就可以了,对任意的非零向量xx^T(E+A^TA)x=x^Tx+(Ax)^T(Ax)>0
答:A^TA是正定矩阵.对任一非零n维列向量x,因为r(A)=n,所以AX=0只有零解.所以Ax≠0所以(Ax)^T(Ax)>0即x^TA^TAx>0所以A^TA是正定矩阵.