设A为m×n矩阵个,证明方程AX=E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:46:00
设A为m×n矩阵个,证明方程AX=E
设A,B分别为m×n,n×m矩阵,n>m,且AB=Em,证明B的m个列向量线性无关.

反证法就行了不妨设j,k列相关Bj=cBk则Ejj=cEjkEjj=1=>Ejk=1/c不等于0矛盾所以不存在j,k使线性相关

设A为m×n实矩阵,证明r(A^T A)=r(A)

方法:证明齐次线性方程组AX=0(1)与A^TAX=0(2)同解即可显然(1)的解是(2)的解设X0是(2)的解,则A^TAX0=0所以X0^TA^TAX0=0所以(AX0)^T(AX0)=0所以AX

高数线性代数设A为n阶可逆矩阵,B为任一n*m矩阵,如何证明

初等行变换相当于在矩阵的左边乘一系列初等矩阵初等矩阵的乘积是可逆矩阵P(A,B)=(E,X)PA=EPB=X得P=A^-1,X=A^-1B

设A为mxn矩阵,B为nxm矩阵,m>n,证明AB不是可逆矩阵?

经济数学团队帮你解答,有不清楚请追问.请及时评价.

设A为m×n矩阵,证明方程AX=Em有解的充分必要条件为r(A)=m

充分性:当r(A)=m时,则A是行满秩的,A多添任一列向量组成的增光矩阵还是行满秩的,即有r(Aei)=m,其中ei是单位阵的第i列,于是方程Ax=ei有解bi,令X=【b1b2...bm】,则AX=

设A为n阶矩阵A的m次方等于0矩阵,证明E-A可逆

A^m=0A^m-E^m=-E^m针对左边利用展开式(A-E)[A^(m-1)+A^(m-2)E+……+E]=-E矩阵可逆的定义就是看这个矩阵和另外一个的乘积是否为单位阵这个只能这种方法

设m×n是矩阵A的秩为n,证明:矩阵A^TA为正定矩阵

首先,因为(A'A)'=A'(A')'=A'A,所以A'A是对称矩阵.又对任一非零向量X,由于r(A)=n,所以AX≠0.(否则AX=0有非零解)所以X'(A'A)X=(AX)'(AX)>0.所以A'

设A为m*n的矩阵,B为n*m的矩阵,m>n,证明AB=0

应该是行列式|AB|=0因为A为m*n的矩阵所以r(A)

线性代数:设A为m×p矩阵,B为s×n矩阵,证明:

参考\x09  人是那样复杂的一种动物,想了解对方根本是不可能的一件事,没有了解,又不能相处,倒不如独身.——《美娇袅》

设A为m*n实矩阵,A^TA为正定矩阵,证明:线性方程组AX=0只有零解.

1、因为A*A'('表示转置)为n*n的矩阵,而一个矩阵的秩必≤它的行数或列数,所以r(A*A')≤n可以直接得到.2、需要说明的是,r(n)中的n是什么?你可能看错了,一个数是不必算秩的(一个非0数

设A正定矩阵,证明A^m为正定矩阵.

1、当m为偶数时,A^m=[A^(m/2)]'[A^(m/2)]为正定阵2、当m为奇数时,A^m=A^((m-1/)2)AA^((m-1)/2)=[A^((m-1/)2)]'AA^((m-1)/2)=

问个线性代数题设A是m×n矩阵,R(A)=r,证明存在秩为r的m×r矩阵B与秩为r的r×n矩阵C使A=BC

这个叫做矩阵的满秩分解,《矩阵论》上的定理.证明:A是m×n矩阵,R(A)=r,则A一定能通过初等行列变换变成如下矩阵100...00010...00001...00...000...00就是左上角是

设A,B为n阶矩阵,如果B为矩阵方程AXA=A的唯一解,证明:A为矩阵方程BXB=B的解

A进行LU分解,使得L行满秩,U列满秩,令X=U'(U'U')^-1(LL')^-1L'AXA=LUU'(U'U')^-1(LL')^-1L'LU=A可以看出X=U'(U'U')^-1(LL')^-1

设A B分别为m×n,n×m矩阵,n>m,AB=Em,证明B的m个列向量线性无关

证明:矩阵AB的秩为r(AB)=r(Em)=m,而r(AB)=m.----------(1)另外由题意,B为n×m矩阵,且n>m,则可知r(B)

设m×n矩阵A的秩为r.证明:A可以表示成r个秩为1的矩阵之和

因为R(A)=r,所以可以用一系列的行初等变换把A化为行阶梯形B,即存在可逆阵P,使PA=B;B中只有r行含非零元素,B可以写成r个矩阵的和B=C1+C2+…+Cr,其中Ck(1≤k≤r)的第k行是B

设m×n实矩阵A的秩为n,证明:矩阵AtA为正定矩阵.

证:对任一n维向量x≠0因为r(A)=n,所以Ax≠0--这是由于AX=0只有零解所以(Ax)'(Ax)>0.即有x'A'Ax>0所以A'A为正定矩阵.注:A'即A^T

设A是m*n矩阵,B是m*s矩阵,证明矩阵方程A'AX=A'B一定有解(其中A'为A的转置矩阵)

只需证明A'A的秩等于(A'A,A'B)的秩,即r(A'A)=r(A'A,A'B)首先r(A'A)