设an2收敛证明收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:19:33
设an2收敛证明收敛
高数,微积分证明:收敛+收敛=收敛

1、设∑|Xn|,∑|Yn|收敛,由于||Xn|+|Yn||=|Xn|+|Yn|,左右两边均为正项级数,则∑||Xn|+|Yn||=∑|Xn|+∑|Yn|,因此∑||Xn|+|Yn||收敛2、设∑|X

设级数∑u^2收敛,证明∑u/n绝对收敛

由于∑u²收敛,∑1/n发散,因此存在N,当n>N时,有u²

设数列{nan}收敛,且级数∑an收敛,证明级数∑n(an-an-1)也收敛

先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛

级数收敛性的证明求:设∑an^2收敛,证明:∑an/n绝对收敛?

证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.

设两个级数都收敛,证明两个级数和的平方也收敛

an,bn收敛知an->0,bn->0an再问:但这不是正项级数再答:和正项级数有什么关系?你哪没看懂再问:an的平方怎么收敛的再答:老师给了个反例反例a_n=b_n=(-1)^n/n^0.1,刚才默

设级数∑un收敛,证明∑(un+un+1)也收敛

这道题考察级数的两个性质:1.任意加上或去掉级数的有限想不改变它的收敛性.2.若级数∑an收敛,级数∑bn收敛,则级数∑(an+bn)也收敛.通项拆为两部分Un和U(n+1),已知∑Un收敛,而∑U(

收敛数列证明, 

打字没法儿排版,看图片吧!因为有下标,会显示较小,建议点击放大!【经济数学团队为你解答!】再问:谢谢您再答:如果满意,请采纳,谢谢!

证明数列收敛 

单调性用作差开证明,很明显是单增的,所以要找上界,上界可以适当放缩来找,把分母变小就可以,把分母里头的123…去掉,写成公比二分之一的等比数列求和,写出来很容易的看出上界是1,单调有界数列必收敛得证.

证明级数收敛.

交错项级数判断敛散性,用莱布尼兹判别法:令1/√n=x显然e^x-1-x求导后可以看出它是根据x的增大而增大,由于同增异减,当n增大时,x减小,故里面也在减小,且极限为0满足莱布尼兹定理,所以原级数收

调和级数收敛证明

把调和级数看成一个数列,数列通项是调和级数前n项和数列收敛的充要条件是:柯西判别法(什么名字记不清楚了)对于调和级数的这个数列,满足∀ε>0,存在n>0,∀m>n,有1/n+1

如何证明数列收敛?

楼上说有问题.数列收敛的定义:如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|

设级数∑An收敛,且lim(nAn)=a,证明∑n(An-A(n+1))收敛

马上写来再答:设级数∑An收敛于bn(An-A(n+1))=nAn-(n+1)A(n+1)-A(n+1)Sn=∑(k=1,n)[kAk-(k+1)A(k+1)-A(k+1)]=A1-(n+1)A(n+

级数Un^2收敛,证明Un收敛

这是错的.比如Un=1/n

设∑Un绝对收敛 ∑Vn收敛 证明∑UnVn绝对收敛

要证∑unvn绝对收敛就是要证级数∑|unvn|=∑|un||vn|收敛,由于∑vn收敛,故数列{vn}有界(因为limvn=0),所以有|vn|≤M.根据级数的柯西收敛原理,由∑un绝对收敛可知,对

设级数Un-Un-1收敛,级数Vn收敛,证明UnVn绝对收敛

是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级

级数收敛设级数∑Un(n=1,2,…,∞)收敛,证明∑(-1)^n*Un/n不一定收敛,(-1)^n指-1的n次方.

只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/

设数列{nan}收敛,级数∑n(an-an-1)也收敛,证明级数∑an收敛

按定义将∑n(an-an-1)展开,找到三个级数之间部分和的关系再答:再答:不用客气^_^