设AB是数域K上的两个n矩阵证明存在K上的非零矩阵D,使ABD=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 22:31:26
题目应该是哪里抄错了,下面构造例子说明这一点.设2阶矩阵C(t)=[cos(t),sin(t);-sin(t),cos(t)],可知C(t)正交且|C(t)|=1.对n=3,考虑3阶分块矩阵A=[-1
两个正交矩阵的乘积仍是正交矩阵,正交矩阵的逆仍是正交矩阵.一个n阶矩阵的A行(列)向量可以构成Rn的标准正交基的充要条件是A是正交矩阵.具体的说明,你自己补全下.
必要性因为AB=0所以B的列向量都是Ax=0的解由于B≠0所以Ax=0有非零解所以r(A)
定理:如果AB=0,则秩(A)+秩(B)≤n.证明:将矩阵B的列向量记为Bi.∵AB=0,所∴ABi=0,∴Bi为Ax=0的解.∵Ax=0的基础解系含有n-秩(A)个线性无关的解,∴秩(B)≤n-秩(
就是要证明|λE-AB|=|λE-BA|.考虑分块矩阵P=E0-AE与分块矩阵Q=λEBλAλE可算得PQ=λEB0λE-AB有λ^n·|λE-AB|=|λE|·|λE-AB|=|PQ|=|P|·|Q
AB是对称矩阵(AB)'=ABB'A'=AB你的前提条件不足,A,B应该是对称矩阵,这样就有BA=AB
设A=(aij)i,j=1,.,n.设列向量ei=(0,...,0,1,0,...,0)^T,其中1是第i个坐标,i=1,2,...,n.K^n中任意非零列向量都是A的特征向量===>Aei=tiei
证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=
B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)
(Aa,Ab)=(Aa)^T(Ab)=a^TA^TAb=a^Tb=(a,b)由上知(Aa,Aa)=(a,a)所以||Aa||=√(Aa,Aa)=√(a,a)=||a||.
充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB
应该是行列式|AB|=0因为A为m*n的矩阵所以r(A)
设a是A的特征值则a^k是A^k的特征值(定理)而A^k=0,零矩阵的特征值只能是0所以a^k=0所以a=0即A的特征值只能是0.
AB=0,求证r(A)+r(B)≤n,Sylvester公式r﹙A﹚+r﹙B﹚-n≤r﹙AB﹚右边为零,即得.[Sylvester公式的证明,教材上都有.用分块矩阵的初等变换,打起来麻烦,自己看吧!]
矩阵X=(xij)为n阶上三角形矩阵当且仅当当i>j时,矩阵的元素xij=0.设A=(aij),B=(bij)因为A,B均为n阶上三角形矩阵,故当i>j时,aij=0,bij=0令C=AB=(cij)
证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B
只要借助转置和逆的穿透律以及正交矩阵的定义即可,证明如图
[E0*[kEA=[kEA-BkE]BE]0kE-BA],取行列式得k^M*|D|=k^N|kE-BA|,D是中间的矩阵.另一方面【E-A*D=[kE-AB00E]BE],去行列式得|D|=|kE-A