设A2-A-6E=0,则A 3E=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:26:29
由A^2=A知道A的特征值只能是1和0若|A+E|=0,则-1是其特征值,这不可能所以|A+E|≠0,即可逆
解:因为A^2-2A-E=0所以A(A-2E)=E所以A-2E可逆,且(A-2E)^-1=A.
由题:A^2-3A=0(这里的0,表示n阶0矩阵,以下同)得到:A(A-3E)=0由于A≠0,因此A-3E=0,0矩阵不可逆,从而A-3E不可逆!
证明:因为A2=E,所以0=(A-E)(A+E)所以0=r((A+E)(A-E))≥r(A+E)+r(A-E)-n所以r(A+E)+r(A-E)≤n又因为r(A+E)+r(A-E)=r(A+E)+r(
图在哪?插个图给你解啊.如果∠EA4A3=什么啊再问:∠EA4A3=8°再答:因为A3A4=A3E∠EA4A3=8°所以∠A3EA4=∠EA4A3=8°∠DA3A2=16°因为A2D=A2A3∠DA3
反证法若A是可逆矩阵,则A×A逆=EA=A×A×A逆=A×A逆=E矛盾
求法很多,用一种最简单的:根据秩的不等式:R(A)+R(A-E)-n≤R[A(A-E)]=R(A^2-A)又因为:A^2=A,即A^2-A=0(零阵)因此:R(A)+R(A-E)-n≤R[A(A-E)
你看平方和是10,比6大4.因为0和1的平方都不变,因此这个变化是2造成的.2平方是4,多了2,现在多了4,那么就一定是2个2.有了2个2,那么剩下三个加起来应该是2,这样五个数加起来才是6.三个数加
证明:∵方阵A满足A2-A-2E=0,∴A2-A=2E,∴A×A−E2=E所以A可逆,逆矩阵为A−E2,∵方阵A满足A2-A-2E=0,∴A2=A+2E,由A可逆知A2可逆,所以A+2E可逆,逆矩阵为
证:由A2-3A-3E=0,得(A-E)(A-2E)=5E(A-E)[(A-2E)/5]=E由定义,得(A-E)可逆,且(A-E)-1=(A-2E)/5再问:再答:就是这个题目啊。再问:哦哦,谢谢
选项A.|a1-a2,a2-a3,a3-a1|=|a1-a2,a2-a3,a2-a1|=0B.|a1-a2,a2-a3,a3-a1|=.|a1-a2,a1-a3,a3-a1|=0选项C.|a1+2a2
3a3+12a2-6a-12=3a3+3a2+9a2-6a+1-13=3a2(a+1)+(3a-1)2-13当a=7−1时原式=37-13=24.故选A.
要证明E-2A可逆我们可以假设其可逆,并设其逆为aE+bA则(E-2A)(aE+bA)=E那么aE+(b-2a)A-2bA^2=E又A^2=A那么(a-1)E-(b+2a)A=0所以a-1=0,b+2
1,C,2,A,C,D
由a2+b2-6ab=0可得:(b-a)2=4ab①;(a+b)2=8ab②;②÷①得(a+bb−a)2=2,由a>b>0,可得a+bb−a<0,故a+bb−a=-2.故答案为:-2.
利用公式E=E-A^m=(E-A)(E+A+A^2+A^3+……A^m-1)可得.
e=c/a=1/2c=1/2*ab^2=a^2-c^2=3/4*a^2x1+x2=-b/a=-(根号3)/2x1x2=-c/a=-1/2x1^2+x2^2=(x1+x2)^2-2*x1*x2=3/4+
A^2-3A+2E=(A-E)(A-2E)=4E, 由逆矩阵的定义有:A-E=1/4(A-2E)
由A^2-A-7E=0得:A(A-1)=7E故A(A-1)的行列式为7而不为0,假如A是不可逆矩阵,则A的行列式为0那么A(A-1)的行列式就为0矛盾,所以A可逆又原式可变为(A+2E)(A-3E)=
若存在B使B(A+E)=E,就可以了A2-2A-8E=0--->A2-2A-3E=5E---->(A+E)(A-3E)=5E---->(A+E)(A/5-3/5E)=E所以(A/5-3/5E)此类问题