设A.B都是n阶矩阵,且AB=0,则A和B的秩.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 16:05:18
设A.B都是n阶矩阵,且AB=0,则A和B的秩.
设A,B都是N阶矩阵,且A可逆,证明AB与BA有相同的特征值

A^-1表示A的逆,^表示后面的是指数.由A^-1ABA=BA可知AB与BA相似,故AB与BA有相同的特征值.

设A,B都是n阶正交矩阵,且|AB|

证:因为正交矩阵的行列式是正负1再由|AB|

设ab都是n阶矩阵且a可逆证明ab与ba相似

a'(ab)a=ba,而a'和a是可逆矩阵,着显然是“相似矩阵”的定义,所以ba和ab相似

设AB都是n阶矩阵,且|A|不等于0证明AB与BA相似

因为|A|≠0所以A可逆所以A^-1(AB)A=BA所以AB与BA相似.再问:还有设3阶矩阵A的特值为λ1=1λ2=0λ3=-1p1^T=(122)p2^T=(2-21)p3^T=(-2-12)球A还

设A,B都是n阶矩阵,证明AB是对称矩阵的充分必要条件是AB=BA

AB是对称矩阵(AB)'=ABB'A'=AB你的前提条件不足,A,B应该是对称矩阵,这样就有BA=AB

设A、B都是n阶非零矩阵,且AB=0,则A和B的秩(  )

若:r(A)=n,则A-1存在,由AB=0,得B=0,矛盾,所以:r(A)<n,同理:r(B)<n,故选择:B.

设A,B都是n阶非零矩阵,且AB=O,则A、B的秩应满足什么条件?

R(A)+R(B)再问:能具体解释一下吗再答:可用基础解系证明。设R(A)=r,R(B)=s由AB=O知道,B的列向量都是AX=O的解向量,但B的列向量组只是AX=O的所有解向量的一个部分组,所以B的

设A、B都是n阶矩阵,且AB=O,证明R(A)+R(B)

设A的R(A)=r,则Ax=0的解空间的维数为n-r,再设B=[b1,b2,..,bn],其中b1,b2,..,bn是矩阵B的列,由AB=O,得Ab1=O,Ab2=0,...,Abn=0,故b1,b2

设A,B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA

充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB

设A,B都是N阶矩阵,且AB=0,证明R(A)+R(B)〈=N

AB=0表示B的列都属于Ker(A),那么r(A)+r(B)

设A,B都是n阶矩阵,A可逆,且存在一个常数l,满足A=(A-lB)B,求证:AB=BA

若常数l=0则AB=A,即B=E;若常数l非零,E=(E-lA^{-1}B)B,所以B可逆且E=B(E-lA^{-1}B),相减得lA^{-1}B^2=lBA^{-1}B,左乘l^{-1}A右乘B^{

设A,B都是n阶矩阵,且(AB)^2=E,则必有 选3

还可能等于-1.再答:可以收藏我哦

设A,B均为n阶矩阵,且AB=BA求证r(A+B)

这个比较麻烦,要借助向量空间的维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A,B均为n阶矩阵,且AB=BA,证r(A+B)

不是这个稍等再问:额,不是这道题啊再答:这个要借助空间维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA.

证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B

设A与B都是N阶正交矩阵试证AB也是正交矩阵

只要借助转置和逆的穿透律以及正交矩阵的定义即可,证明如图

设A,B都是n阶矩阵,AB=A+B,证明:

证明:(1)因为(A-E)(B-E)=AB-(A+B)+E=E,所以A-E,B-E都可逆.(2)由(1)知E=(A−E)(B−E)   =(B−E)(A−E) 

设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵

(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵

设A.B都是n级矩阵,且A+B=AB,求证:AB=BA

利用A-E与B-E的可逆性如图证明.经济数学团队帮你解答,请及时采纳.