设3阶矩阵A的秩为2,A能够对角化,且满足A^2 5A=0,求
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:26:55
参考一下再问:有没有更简单的方法?我们好像没学到过那条推论啊。。。QAQ再答:行列式拉普拉斯展开式有没有学过?
秩为0因为4阶矩阵A的秩为2,所以它的三阶子式一定全为0,(否则秩会为3)既然三阶子式全为0,那么按照伴随矩阵的定义:它的元素全为0,即为0矩阵.故秩为0
A^-1=1/|A|xA*=1/2A*所以1/2=|A^-1|=|1/2A*|=1/8|A*|,|A*|=4|3A^-1+2A*|=|3*1/2A*+2A*|=|7/2A*|=(7/2)^3*4=34
1.|(3A^-1)-2A*|=|3A^(-1)-2|A|A^(-1)|=|-A(-1)|=(-1)^4*1/|A|=1/22.D=(-1)*5*(-1)^(3+1)+2*3*(-1)^(3+2)+1
设f(x)=x-2x^2+3x^3由于A的特征值为1,2,-1所以B的特征值为f(1)=2,f(2)=18,f(-1)=-6.所以B的相似对角矩阵为diag(2,18,-6).(2)|B|=2*18*
证:首先(A^TA)^T=A^T(A^T)^T=A^TA故A^TA是对称矩阵.又对任一非零列向量x由r(A)=n知AX=0只有零解所以Ax≠0再由A是实矩阵,所以(Ax)^T(Ax)>0即x^T(A^
知识点:r(A)=1的充要条件是存在n维非零列向量α,β,使得A=αβ^T.所以有A^2=(αβ^T)(αβ^T)=α(β^Tα)β^T=(β^Tα)αβ^T=tr(A)A.
A为2阶矩阵,且|A|=-1,说明A有一个正的特征值,一个负的特征值,也就是两个不同的特征值.n阶矩阵有n个不同的特征值必可相似对角化,所以A可以相似对角化再问:A可也能只有一个正的或者负的特征值啊再
2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值
啊哈,我就做做看,不知道对不对呐,高等代数学的不是很好.d=A的模=1/2,A的模乘以A^-1的模=E的模=1,A^-1=1/dA*,所以原式等于3A^-1-2(dA-1)=2A^-1=2乘以2=4
A*=|A|A^(-1)=2A^(-1)由|A|=2知|A^(-1)|=1/2|3A*|=|6A^(-1)|=6³|A^(-1)|=6³×1/2=108A^(-1)表示A的逆矩阵
依次作:c2-λc1c3+c1c4-2c1同样方法用第4列的-1将第2行其余元素化为0然后c2+3c3即得
|AA*|=|A||A*|=||A|E||;//现在都是数了,不是矩阵了,所以可以用代数方法做了|A|=3是数,E是单位矩阵(也是上三角行列式),那么||A|E|=3*3*3*3=81;//上三角行列
AA*=|A|E,∴A*=2A^-1由于A为3阶矩阵,∴|-2A*|=|-4A^-1|=(-4)^3×1/2=-32.再问:那请问这样|-2A*|=(-2)^3|A*|=(-2)∧3|2A^-1|=(
由于(3A)−1=13A−1,AA*=|A|E=12E,因此|(3A)-1-2A*|=|A||A||(3A)-1-2A*|=2|A(13A−1−2A*)|=2|13E−2•12E|=2|−23E|=2
大家都不帮你我来帮你因为AA*=|A|E,两边同时乘A逆,有A*=|A|A逆,两边同时取行列式,有|A*|=||A|A逆|=|A|^(N)|A逆|又因为|A逆|=|A|分之一(这个就不用给你推了吧.A
①由矩阵行列式值等于其特征值之积:|A|=λ1*λ2*...*λn=-1×1×2=-2由矩阵A的行列式|A|≠0(或者由A有三个不等的特征值),矩阵A满秩,故秩r=3;②为了表示上的方便,记矩阵P的逆
E+2A的特征值为3,5,7所以|E+2A|=105一般地,若A的特征值为λ,则f(A)的特征值为f(λ).其中f(λ)是多项式.再问:E+2A的特征值为3,5,7怎么算呢再答:一般地,若A的特征值为
|-3A|=(-3)^3|A|=-27*2=-54
秩为四啊[A]不等于零,就是满秩四阶,就是四