设3元线性方程组AX=b,A的秩为2,为方程组的解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:26:42
设3元线性方程组AX=b,A的秩为2,为方程组的解
设A是n阶方阵,则齐次线性方程组AX=0有非零解的充要条件是非齐次线性方程组 AX=b有无穷多解 这句话对吗?

不对.Ax=b有无穷多解,A不满秩,Ax=0有非零解;反之未必,Ax=0有非零解,A不满秩,但Ax=b可能无解.如有解则有无穷多解.

设a1,a2,a3是非齐次线性方程组Ax=b的解,a=2a1+ka2-3a3,则k=?时,a是Ax=b的解,当k=?时,

知识点:非齐次线性方程组的线性组合仍是其解的充要条件是组合系数之和等于1.非齐次线性方程组的线性组合是其导出组的解的充要条件是组合系数之和等于0.2+k-3=1,即k=2时,a是Ax=b的解.2+k-

线性代数:设A为n阶方阵,若齐次线性方程组Ax=0只有零解则非齐次线性方程组Ax=b解的个数是?

是的如果增广矩阵(A|b)的秩r(A|b)=r(A)那么就有解不相等就无解因为r(A)=n时相应的齐次线性方程组只有非零解非齐次线性方程组就有唯一解r(A)

设n阶方阵A的行列式为零,则线性方程组Ax=b

D正确.若AX=b有解,则有无穷多解但也可能无解所以D正确

一道线性代数题目设A是mxn矩阵,非齐次线性方程组Ax=b有解的充分条件是?

Ax=b有解r(A)=r(A,b)r=n时,方程组不一定有解r=m时,因为m=r(A)再问:为什么r(A,b)

.设 a1,a2是非齐次线性方程组 AX=B的两个解向量,则A((2A1+3A2)/5)=?

由已知Aa1=B,Aa2=B所以A((2a1+3a2)/5)=(2Aa1+3Aa2)/5=(2B+3B)/5=B即(2a1+3a2)/5仍是AX=B的解.

n元线性方程组AX=b有唯一解的充分必要条件是 为什么不是秩A=n

n元线性方程组AX=b有唯一解的充分必要条件是r(A)=r(A,b)=nr(A)=n并不能保证r(A)=r(A,b)比如增广矩阵=111011001r(A)=2,r(A,b)=3

设A是m*n矩阵,非齐次线性方程组Ax=b有解的充分条件是

若m>n则r(A)≤min(m,n)≤n若m=n则r(A)=n=m若m

设a1,a2,a3是4元非齐次线性方程组Ax=b的三个解向量,且秩r(A)=3,且a1+a2=

再问:请问第二行那里的3(a1+a2)-2(a2+2a3)是根据什么得出的呢?为什么书后答案是:x=(1,-2,0,1)T+k(1,2,1,-4)T再答:

设a是n元非齐次线性方程组Ax=b的一个解,b1,b2,……br(r

设ka+k1b1+...+krbr=0用A左乘等式两边,再由已知得kb=0所以k=0所以k1b1+...+krbr=0因为b1,...,br是基础解系(线性无关)所以k1=...=kr=0所以a,b1

又来求救啦!线性代数! 设a是非齐次线性方程组Ax=b的一个解 , t1,.t(n-r) 是对应的齐次线性方程组

证明:由已知α1,.α(n-r)线性无关.且Aβ=b≠0,Aαi=0,i=1,2,...,n-r(1)设kβ+k1α1+...+k(n-r)α(n-r)=0用A左乘上式两边得kAβ+k1Aα1+...

设3元线性方程组AX=b,A的秩为2,n1,n2,n3为方程组的解,n1+n2=(2,4,0)^T,n1+n3=(1,-

由于方程组是非齐次的它的解等于它本身的一个解加上它的齐次方程组的解它的齐次方程组的解直接用n2-n3就得到了也就是(1,6,-1)T

设向量a,b是非齐次线性方程组Ax=b的两个不同的解.则

有个知识点需要记住:非齐次线性方程组的解的线性组合仍是其解的充分必要条件是组合系数之和等于1.A.组合系数之和为1+1=2,不对B.1-1=0不对C.3-2=1正确D.2-3=-1不对.相应还有:非齐

设矩阵A(m*n)的秩r(A)=n,则非齐次线性方程组Ax=b()

选择C,对(A|b)(b=(b1,b2,……bn)’)进行初等矩阵变换可得见图片(画得不好,但可以表示就行),其中最后一列b1',b2',……  bn'&n

设线性方程组AX=B有3个不同的解,r1r2r3,且R(A)=n-2,n是未知数的个数,则() 选什么为什么

(A)不对.c1r1+c2r2+c3r3是AX=B的解c1+c2+c3=1(B)不一定(C)正确.A(2r1-3r2+r3)=2Ar1-3Ar2+Ar3=2B-3B+B=0.(D)不一定

设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组

∵A是n阶的矩阵,∴AX=0和AX=b,含有n个未知数,于是,AX=0基础解系含向量的个数为:n-r(A),又:r(A*)=n,r(A)=n1,r(A)=n−10,0≤r(A)≤n−2,已知:A*≠0

设A是n阶方阵,当条件( ) 成立时,n元线性方程组AX=b有唯一解

设B=(A,b)也就是把b这一列添加到矩阵A的右侧形成一个新的矩阵B,如果B的秩等于矩阵A的秩,那么方程组有唯一解,答案可以写成r(A,b)=r(A)

设A是5×3的矩阵,且秩A=(2),已知n1和n2是非其次线性方程组AX=B的两个相异的呃解,则AX=B的通解为?

【分析】非齐次线性方程组Ax=b的解的结构ξ(特解)+k1a1+k2a2+…+krar(基础解系)写出通解秩A=(2)基础解系解向量有3-2=1个则n1-n2是基础解系Ax=b的解为n1+k(n1-n