设3元实二次型f(x1,x2,x3)的秩为3,正惯性指数为2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:06:07
f(x1)=f(x2),表明对称轴为x=(x1+x2)/2=-b/(2a)因此有:x1+x2=-b/af(x1+x2)=f(-b/a)=a*b^2/a^2-b*b/a+c=b^2/a-b^2/a+c=
实际上就是求矩阵A的特征值因为A中各行元素之和为3所以A*(1,1,1)T=3(1,1,1)T所以(1,1,1)T是属于特征值3的一个特征向量只能做到这里了还有什么条件吧再问:这就是全部的题目,让求的
f(x1,x2,x3)=(x1-x2)^2+(x2-x3)^2=x1^2-2x1x2+2x2^2-2x2x3+x3^2A=1-10-12-10-11
楼主命题有误,必须加上A为正规矩阵,即A'*A=A*A',本命题才成立.反例:令A=[11;01]x=[0.6;-0.8]'为长度为1的向量.则:norm(x)^2=x1^2+x2^2=1.二次型f(
不等式恒成立的意思就是函数在定义域上单调递增函数x>a的时候单调递增所以a
用Lagrange乘子法,求一下偏导就出来了再问:Lagrange乘子法,没听过,能不能用简单的线性代数知识解答再答:当然也可以先对A是对角阵的情况进行证明,然后就好办了一般情况只要注意A可以正交对角
与A的秩有关!因为r(A)=1所以Ax=0的基础解系含3-1=2个向量即A的属于特征值0的线性无关的特征向量有2个所以A的特征值是3,0,0
(1)二次型的矩阵A=1t1t20101由A奇异知|A|=0.而|A|=-t^2所以t=0(2)此时A=101020101|A-λE|=-λ(λ-2)^2.所以A的特征值为λ1=0,λ2=λ3=2.对
这是定理,教材中有的,你查查先
由已知,f的矩阵A=20000101a与B=2000b000-1相似所以2+a=2+b-1且|A|=-2=|B|=-2b所以b=1,a=0.且A=200001010的特征值为2,1,-1(A-2E)x
由已知,ax1^2+bx1+c=ax2^2+bx2+c;即是a(x1^2-x2^2)=-b(x1-x2);所以有;x1+x2=-b/a;(由于x1-x2!=0);所以f((x1+x2)/2)=a((x
答案错了,要求的值其实等于涵数的极值
因为A^2-2A=3E所以A的特征值a满足(a-3)(a+1)=0所以A的特征值只能是3或-1.又由于f的正惯性指数p=1所以A的特征值为3,-1,-1,-1所以规范型为(A).PS.事实上,由正惯性
正惯性指数为(1),负惯性指数为(1)详解:f(x1,x2,x3)=(x1,x2,x3)(a1,a2,a3)^T(b1,b2,b3)(x1,x2,x3)^T所以二次型的矩阵A=(a1,a2,a3)^T
其规范形为y1^2+y2^2+y3^2-y4^2注:二次型的秩=正惯性指数+负惯性指数再问:秩为4,就是取前4个来平方吗?再答:是.系数取正负1,正项的个数为正惯性指数
f(x1)=f(x2),所以x1x2关于对称轴对称,所以x1+x2=2x(-b/2a)=-b/a所以f(x1+x2)=f(-b/a)=c
证明:设αi=(ai1,...,ain)--A的第i行则A=(α1;...;αn)--竖着写,分号表示换行则A^T=(α1^T,...,αn^T)所以A^TA=(α1^T,...,αn^T)(α1;.
二次型的矩阵A=200032023对特征值2,A-2E=000012021化为000010001基础解系为(1,0,0)'.再问:请问化为000010001后是因为右下角是二阶单位阵,所以在左上角添一
秩为1,A有一个二重特征值λ1=λ2=0A中行元素之和为3,A的另一个特征值λ3=3标准型为:diag(0,0,3)再问:为什么行元素之和为3,A的另一个特征值就是3?行元素之和的意思是不是A每一行的
根据韦达定理:x1+x2=-2(1)x1x2=-1(2)(1)^2-4(2)=(x1-x2)^24+4=(x1-x2)^2x1-x2=±2√2再问:当x1<x2的时候,那x1-x2是不是就只等于-2√