设 A,B都为 n阶方阵,判断以下命题是否正确. (AB)T=(AB)−1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:58:09
设 A,B都为 n阶方阵,判断以下命题是否正确. (AB)T=(AB)−1
设A为n阶方阵,证明当秩(A)

这个很简单啊,r(A)

1.A,B为n阶非零矩阵,AB=0,则A,B秩都小于n 2.设A,B为n阶方阵,AB=0,则|A|=0或|B|=0.

1.AB=0,则r(A)+r(B)=1,r(B)>=1所以A,B的秩都小于n2.AB=0两边取行列式即得|A||B|=0再问:我想问的是两道题的区别?麻烦老师再解答一下再答:由(1)知必有|A|=0且

设n阶方阵A的行列式为零,则线性方程组Ax=b

D正确.若AX=b有解,则有无穷多解但也可能无解所以D正确

设A,B为N阶方阵,若A可逆,证明AB与BA相似

因为[A^(-1)]*AB*A=BA,所以AB与BA相似.注:A^(-1)指的是A的逆矩阵.

设A,B为n阶方阵,且r(A)+r(B)

设r(A)=p则存在矩阵P1,Q1使得P1AQ1=C1(C1只有前p行,前p列不为0)则A=P1^-1C1Q1^-1设r(B)=q则存在矩阵P2,Q2使得P2BQ2=C2(C2只有后q行,后q列不为0

高数难题判断题设A 、B 均为n 阶方阵,则||A|B|=|A||B|( × )请问为什么是错误的!|

前者是行列式值倍的行列式值,后者是两个行列式值的乘积从原理上说相当于前者是乘法,后者是幂指

线性代数 设A,B为n阶方阵,B不等于0,且AB=0,

选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为

设A,B为n阶方阵,且AB=A+B,试证AB=BA

由AB=A+B,有(A-E)(B-E)=AB-A-B+E=E.A-E与B-E互为逆矩阵,于是也有(B-E)(A-E)=E.展开即得BA=A+B=AB.

设A,B为n阶方阵,满足关系AB=0,则必有_____

AB=0左右取行列式得|A||B|=0所以|A|=0或|B|=0

设A、B均为n阶方阵,A可逆,且AB=0,则

由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确

问一道线性代数题目设A,B均为n阶方阵,且r(A)

解 : 为了方便,这里只举由一个方程构成的方程组为例子: 方程组 x1+x2+x3=0 的基础解系为 (-1,1,0)^T,(-1,0,1)

设A,B,C均为n阶方阵,且ABC=I,则( )

根据逆矩阵的性质AB=I则有BA=I.已知ABC=I所以A(BC)=I,所以(BC)A=I.故(D)正确再问:貌似我书上的单位矩阵都是E莫非这里的单位矩阵是I?再答:是单位矩阵一般有两种记法,E和I.

设n阶方阵A及s阶方阵B都可逆,求

将逆矩阵设出来直接求解请见下图

以下字母表示方阵.A,B,A+B都为N阶方阵 且都可逆 则A逆+B逆也可逆且为B(B+A)逆A.

B(A+B)逆A(A逆+B逆)=B(A+B)逆(E+AB逆)=B(A+B)逆(BB逆+AB逆)=B(A+B)逆(A+B)B逆=BEB逆=E.A(A+B)逆B(A逆+B逆)=A(A+B)逆(BA逆+E)

设A B都是n阶正交方阵,证明:

A是正交矩阵的充分必要条件是A'A=EAA'=EA^(-1)=A'.由A,B是正交矩阵,所以A'A=E,B'B=E,等等.所以有[A^(-1)]'A^(-1)=(A')'A'=AA'=E,所以A^(-

方阵性质证明问题设AB为n阶方阵,证明|AB|=|A||B|

我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们

设A、B为任意n阶方阵,且BA=A+B,则AB=

BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB

设a,b均为n阶方阵,则必有

这是个定理或性质.它的证明比较繁琐,若学过Laplace展开还好一点.记住这个结论就行了,不必深究它的证明!