论述fx当x趋近于0负时不等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:13:14
原式=lim(x->0)e^[cot²xln(cosx)]=e^[lim(x->0)ln(cosx)/tan²x]=e^[lim(x->0)ln(cosx)/x²]=e^
1.lim(tanx-sinx)/x^3=lim(sinx-sinxcosx)/(x^3*cosx)=lim(sinx-sinxcosx)/x^3=lim(cosx-cos²x+sin
当x趋近于0时,3x/(x^3-x)的极限-3
不让用洛必达法则那么书上等价无穷小的基本公式总可以用吧?那么因为a不为常且不为0,且x趋近于0时,所以(1+x)^a-1=e^[aln(1+x)]-1等价与aln(1+x),这是使用基本公式e^x-1
再问:使用了罗比达法则么但是形式是0比无穷的啊lncosx趋近于0,x分之一趋近于无穷?再答:不用罗比达法则,刚才看错了,指数的极限直接就得到是0.非常对不起。再问:啊?x趋近于0啊!x分之一不是趋近
arctanx,当x趋近于正无穷,负无穷时,函数是的极限分别是π/2,-π/2;当x趋近于无穷时,函数没有极限.arccotx,当x趋近于正无穷,负无穷时,函数是的极限分别是0,π;当x趋近于无穷时,
证明:X²-A²=(X+A)(X-A)X趋向于A时,X-A趋向于0,而X+A不是无穷大量所以(X+A)(X-A)趋向于0所以X²-A²趋向于0所以X²
x->0是统一的,就不写了.用洛必达法则lim[(1+x)^a-1]/(ax)=lima(x+1)/a=lim(x+1)=1
1、本题是无穷小/无穷小型不定式.2、本题的解答方法是运用罗毕达求导法则.3、本题的具体、详细解答过程如下:
1x趋近于无穷-》arctanx趋近于π/2x+arctanx与x之差为π/2但两者都趋近于无穷并处于同一数量级,所以其比值无限趋近于1
这是个1^∞ 型 可以变换 再用洛必达 (当然3楼的提示本质上就错了)见图 望采纳 谢谢
lna-lnb洛必答法则再问:如何使用无穷小量等效替换求此极限再答:那就用泰勒级数啊再答:x→0时,f(x)=f(0)+f'(0)x+f''(0)x^2/2+.....再答:分母是一阶无穷小,所以级数
tanx=2tan(x/2)/(1+tan^2(x/2))sinx=2sin(x/2)cos(x/2)/(sin^2(x/2)+cos^2(x/2)),分子分母同除以cos^2(x/2),得到sinx
令arctanx=tlim(arctanx/x)=lim(t/tant)=lim(t/sint)*limcost=1所以arctanx~x
左极限=lim(x->0-)-x/x=-1右极限=lim(x->0+)x/x=1不等,所以不存在.再问:直接写左极限右极限?再问:只是不知道格式再答:f(0-)f(0+)自己补上去即可。
答案没有错!原式=lim(x->0){[e^x+1/(x-1)]/[1-1/(1+x²)]}(0/0型极限,应用罗比达法则)=lim(x->0){(1+x²)*[e^x+1/(x-
是的,有可能分段函数f(x)在x=0处不存在极限,只存在左极限和右极限,而左极限有可能不等于右极限
可以由图像得到
f(-x)=-2x-1因为他是奇函数,奇函数性质是f(-x)=-f(x),把-带到括号里面去,就是括号里的每一项都得变号再问:不大懂,我想求x小于0的方程再答:你说的内个答案错是因为你符号带错了f(-