n开n次方的极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 10:48:16
不知道你问哪种,n->∞还是n->0?我都提供以上2种方法吧.图片
y=n^(1/n)lny=(lnn)/n∞/∞,用洛必达法则分子求导=1/n分母求导=1所以lim(n趋于∞)lny=lim(趋于∞)1/n=0所以y极限=e^0=1
令a(n)=(-1.5)^n,n∈N+.取两个子列{a(2k)},{a(2k-1)},k∈N+.则lim(k→∞)a(2k)=lim(k→∞)1.5^(2k)=+∞.lim(k→∞)a(2k-1)=-
没有极限因为他的极限在-1和1之间相互交替极限不唯一所以不存在极限再问:那-1的n+1次方呢再答:-1的n+1次方和你上一个问题的答案一样
lim(e^(1/n))=lim(e^(1/∞))=lim(e^0)=1
=lim[1-2a/n]^(-n/2a)*(-2a)=e^(-2a)
先考虑(ln(1/n)+ln(2/n)+...+ln(n/n))/n------>积分(从0到1)lnxdx=-1即ln((n!)^(1/n)/n)--->-1ln(n/(n!)^(1/n))----
令y=n^n=e^(lnn/n)=e^0=1
我做了下,弄得比较麻烦.如果直接用n次根号下n的极限等于1,再进行k次方这样来考虑,会简单许多.
lim(n√2^n+3^n+5^n)=e^{lim[(1/n)*ln(2^n+3^n+5^n)]}对lim[(1/n)*ln(2^n+3^n+5^n)]用L'HOPITAL法则lim[(1/n)*ln
原式=(n开n次方)的p次方的极限=(lim(n->∞)n开n次方)的p次方=1的p次方=1再问:为什么n开n次方是一啊?再答:这个是公式,可以直接用。
不妨设a≥b则(a^n+b^n)^(1/n)≥(a^n)^(1/n)=a(a^n+b^n)^(1/n)≤(2a^n)^(1/n)a*2^(1/n)(极限等于a)由夹逼定理至极限为a最终结果为max(a
ab之间大的那个
Xn=(n!/n^n)^(1/n)两边取对数,lnXn=(1/n)*(ln(1/n)+ln(2/n)+ln(3/n)+···+ln(n/n))上式可看成f(x)=lnx在[0,1]上的一个积分和.即对