n个方程,未知量,行列式A=0的推倒

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 15:36:49
n个方程,未知量,行列式A=0的推倒
设n阶行列式中有n(n-1)个以上元素为0,证明该行列式为0

n阶行列式中有n(n-1)个以上元素为0,不妨令其最小值n(n-1)+1个元素为0,即有n^2-n+1个元素为0.(n^2-n+1)-n=n^2-2n+1=(n-1)^2≥0当n=1时取等号.因为n阶

非其次线性方程组AX=b中未知量的个数为n,方程的个数为m,系数矩阵A的秩为r,则()

因为是非齐次线性方程组,首要问题是方程组有解非齐次线性方程组有解的充分必要条件是r(A)=r(A,b)所以(D),(C)都不对当r=m时,m>=r(A,b)>=r(A)=r=m此时方程组有解.若r=m

设n个方程,n个未知量的齐次线性方程组AX=O的系数行列式等于0,代数余子式A11不为0,该方程组的通解可取为

因为lAl=0,A11≠0,所以r(A)=n-1所以AX=0的基础解系含n-r(A)=1个向量.又因为AA*=|A|E=0所以A*的列向量都是AX=O的解所以β=(A11,A12.A1n)^T构成AX

m个方程n元未知量的线性方程组当系数矩阵的秩小于m时,a方程一定有解b方程一定无解c方程一定有无穷解d不能确定方程是否有

m个方程n元未知量的线性方程组当系数矩阵的秩小于m时,不能确定系数矩阵与增广矩阵之间秩的关系,应该选d再问:好的好的,,谢谢您再问:能不能再问您几道题啊。。。再答:好的再问:再问:第四题再问:再问:这

含n个未知量的齐次线性方程组的系数矩阵的秩r

有个定理是:齐次线性方程组基础解系所含向量的个数等于未知量的个数减去系数矩阵的秩.所以答案为n-

设n个方程n个未知量的齐次线性方程组AX=O的系数行列式lAl=0,而a11的代数余子式A11不等于0,求方程组通解

lAl=0,a11的代数余子式A11不等于0,所以r(A)=n-1,AA*=|A|E=0这说明A*的列向量都是AX=O的解又A11不等于0β=(A11,A12.A1n)^T构成AX=O的基础解系AX=

设A是n阶方阵,且行列式|A|=25,则行列式 |-4A|=

用性质计算.经济数学团队帮你解答.请及时评价.

设A,B均为n阶方阵,则AB的行列式=0可以推出A的行列式=0或B的行列式=0

知识点:|AB|=|A||B|.因为|A||B|=|AB|=0所以|A|=0或|B|=0.

1.解方程:已知(a-2b)x-2b-5=0 (x是未知量,a,b都是常数)2.一个2位数,个位和10位对调得出数6分之

1若a=2b则b=-5/2a=-5时x可以等于任何实数若a≠2bx=(2b+5)/(a-2b)2因为个位和10位对调得出数6分之5,这2为数比对调后大9所以原数=9/(1/6)=543m2——6m+9

对n个未知量n个方程的线性方程组,当它的系数行列式等于0时,方程组一定无解吗?求详解

一定.因为Xn=dn/d当系数行列式d=0是,该式无意义,所以无解.再问:Dn代表什么呀?再答:代表在D中用常数项代替Xn的系数所得的行列式

n阶行列式 Dn=|x a ...a| |a x ...

所有列加到第1列所有行减第1行行列式化为上三角D=(x+(n-1)a)(x-a)^(n-1)再问:能详细点吗?最好发张图再答:所有列加到第1列x+(n-1)aa...ax+(n-1)ax...a...

非齐次线性方程组AX=b中未知量的个数为n,方程个数为m,R(A)=r,则

在n>m时,映射Ax系统可以将n维空间的点映射到m维空间中的r维子空间,且是满射,在m=r时,就是到m空间的满射,因此,对于m空间中的任意点b,都存在源点.有无穷多解.在n

非齐次线性方程组AX=b中未知量的个数为n,方程个数为m,R(A)=r,则 r=m时,AX=b有解 为什么?

R(A)=r=m即方程组中方程的个数就等于系数矩阵A的秩,因此A是满秩的矩阵,所以增广矩阵R(A,b)=R(A)那么方程组当然是有解的

【线性代数】设n阶矩阵A的行列式|A|=d≠0,求|A*|

由于A×A*=|A|E(E为A的同阶单位矩阵,这里是n阶)所以|A|×|A*|=|A×A*|=||A|E|=|A|^n=d^n;|A*|=|A|^(n-1)=d^(n-1)再问:|A|^n怎么得到的?