讨论函数fx=xsin1 x的连续性与可导性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:05:18
讨论函数fx=xsin1 x的连续性与可导性
已知函数fx=lnx-ax^2+(2-a)x 讨论函数的单调性!

答:f(x)=lnx-ax²+(2-a)x,x>0求导得:f'(x)=1/x-2ax+2-a=[-2ax²+(2-a)x+1]/x=-(2x+1)(ax-1)/x因为:x>0所以:

试讨论函数fx=x2-2x-a-1(a∈R)的零点个数

令f(x)=x²-2x-a-1=0则在方程f(x)=0中,△=(-2)²-4*1*(-a-1)=4+4a+4=4a+8当△>0,即4a+8>0,a>-2时,方程f(x)=0有两个不

讨论函数fx=x/(x平方+1)的单调性和奇偶性,在线等

f(-x)=-x/(-x)²+1=-f(x)奇函数设x1大于x2,f(x1)-f(x2)=-x1x2(x1-x2)/(X1²+1)(x2²+1)<0减函数

14 15 题 讨论函数fx

14.2/sinQ再问:15?再答:2再问:为啥再答:f(-x)=f(x)偶函数f(-x)=-f(x)奇函数自己算下。再答:是奇函数。再答:我在看看。再答:3再问:确定?再答:1,(0,0)点。2,f

已知函数fx=ax sinx+cosx,且fx在x=兀/4处的切线斜率为√2兀/8.问①求a的值,并讨论fx在{-兀,兀

1、f(x)'=asinx+axcosx-sinx所以K=f(兀/4)'=√2/2*a+兀/4*a*√2/2-√2/2=√2兀/8所以a=1即f(x)'=sinx+xcosx-sinx=xcosx(1

已知函数fx=[1/(2的x次方-1)+1/2]x³ (1)求fx定义域(2)讨论fx奇偶性(3)证明:fx>

定义域:2的x次方-1大于零,所以x大于0奇偶性:通分,F(-x)=F(X)所以是偶函数证明:因为F(X)=【2的x次方+1/(2的x次方-1)乘以2】X的三次方,且x大于零,根据各项的正负关系可以知

已知函数fx=1/a-1/x,x>0,a>0.讨论fx在定义域上的单调性,并给予证明?

函数f(x)的定义域为(0,+&),函数在其定义域上是单调增函数.证明如下:方法(一)运用定义证明任取x1,x2在其定义域内,且x10,x2>0,且x10即函数在定义域上是单调增函数.

已知函数f(x)=ax-lnx(a为常数)(1)当a=1时求函数fx的最值(2)讨论函数fx在(0,∞)的最值.

f(x)=x-lnx,x属于(0,+∞)f'(x)=1-1/x令f'(x)=0,解得x=1(0,1)递减,(1,+∞)递增x=1时,有极小值f(1)=1lim(x趋近于0)f(x)=+∞lim(x趋近

已知函数fx=x^4+ax^3+2x^2+b(x∈R),其中a,b∈R 1.当a=-10/3时,讨论函数fx的单调性 2

解题思路:(1)将a的值代入后对函数f(x)进行求导,当导函数大于0时求原函数的单调增区间,当导函数小于0时求原函数的单调递减区间.(2)根据函数f(x)仅在x=0处有极值说明f'(x)=0仅有x=0

讨论函数fx=x/根号下1+x^2的单调性

f(x)=x/√(1+x^2)f'(x)=[√(1+x^2)-2x^2/√(1+x^2)]/(1+x^2)       =

已知函数fx=|x|(x-a),a为实数.(1)讨论fx在R上的奇偶性; (2)当a小于等于0时,求函数fx的单调区间;

(1)当a=0时,f(x)=|x|x,f(-x)=-|x|x=-f(x),所以f(x)为奇函数;当a≠0时,f(x)=|x|(x-a),f(-x)=-|x|(x+a)≠-f(x),且f(-x)=-|x

已知函数fx是偶函数,当x大于等于0时.fx=x的三分之一次方 (1)试写出函数fx的关系式 (2)讨论函数fx的单调性

已知函数fx是偶函数,当x大于等于0时.fx=x的三分之一次方(1)试写出函数fx的关系式(2)讨论函数fx的单调性(1)解析:∵函数fx是偶函数,当x大于等于0时.fx=x的三分之一次方∴f(-x)

讨论幂函数fx=三次根号下x在定义域内的单调性

用导数证不行么 要简单的多假如用定义法那就如图难倒是不难但用定义法就得考虑所有的情况所以比较麻烦还不如导数了

已知函数fx=x^2/(x+a)(1)判断fx的奇偶性并说明理由(2)当a=-1时,讨论fx在区间(1,正无穷)上的单调

(1):当f(x)为偶函数,令f(x)=(x)^(2*1/(x+a))=(-x)^(2*1/(-x+a))=f(-x)则1/(x+a)=1/(a-x),所以不成立.当f(x)为奇函数,令f(x)=(x

已知函数fx=x-2/x+a(2-Inx),a>0 .讨论fx的单调性

定义域为(0,+∞)f'(x)=1+2/x²-a/x=(x²-ax+2)/x²f'(x)与g(x)=x²-ax+2符号一样对g(x)△=a²-8(a>

已知函数fx=lnx-ax2+(2-a)x 讨论fx单调性.

f(x)=lnx-ax²+(2-a)x,x>0f′(x)=1/x-2ax+2-a=[-2ax²+(2-a)x+1]/x=(2x+1)(1-ax)/x=(2+1/x)(1-ax)因为

讨论函数fx=lnx/x²的图像与直线y=k的交点个数

答:f(x)=lnx/x^2求导:f'(x)=1/x^3-2lnx/x^3=(1-2lnx)/x^3因为:1/e0,f(x)单调递增e^(1/2)