讨论函数fx=ax x-1在-1到1上的单调性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:06:14
x=-3和1,y=0即函数值相等所以对称轴是x=(-3+1)/2=-1
令f(x)=x²-2x-a-1=0则在方程f(x)=0中,△=(-2)²-4*1*(-a-1)=4+4a+4=4a+8当△>0,即4a+8>0,a>-2时,方程f(x)=0有两个不
f(-x)=-x/(-x)²+1=-f(x)奇函数设x1大于x2,f(x1)-f(x2)=-x1x2(x1-x2)/(X1²+1)(x2²+1)<0减函数
/>设f(x)=ax²+bx+c,因为f(0)=0+0+c=1,所以f(x)=ax²+bx+1,所以f(x+1)-f(x)=a(x+1)²+b(x+1)+1-(ax
定义域:2的x次方-1大于零,所以x大于0奇偶性:通分,F(-x)=F(X)所以是偶函数证明:因为F(X)=【2的x次方+1/(2的x次方-1)乘以2】X的三次方,且x大于零,根据各项的正负关系可以知
函数f(x)的定义域为(0,+&),函数在其定义域上是单调增函数.证明如下:方法(一)运用定义证明任取x1,x2在其定义域内,且x10,x2>0,且x10即函数在定义域上是单调增函数.
函数f(x)=√(x+1)的定义域是x>-1.设任意x1、x2∈(-1,+∞),且x1
f(x)=x-lnx,x属于(0,+∞)f'(x)=1-1/x令f'(x)=0,解得x=1(0,1)递减,(1,+∞)递增x=1时,有极小值f(1)=1lim(x趋近于0)f(x)=+∞lim(x趋近
解析:∵f(x)=-1/f(x+2)令x=x+2代入得f(x+2)=-1/f(x+4)∴-1/f(x+4)=-1/f(x)∴f(x)=f(x+4)选择C再问:再问:请问能再问一题吗?11题的最后一小问
f(x)=x/√(1+x^2)f'(x)=[√(1+x^2)-2x^2/√(1+x^2)]/(1+x^2) =
(1)当a=0时,f(x)=|x|x,f(-x)=-|x|x=-f(x),所以f(x)为奇函数;当a≠0时,f(x)=|x|(x-a),f(-x)=-|x|(x+a)≠-f(x),且f(-x)=-|x
已知函数fx是偶函数,当x大于等于0时.fx=x的三分之一次方(1)试写出函数fx的关系式(2)讨论函数fx的单调性(1)解析:∵函数fx是偶函数,当x大于等于0时.fx=x的三分之一次方∴f(-x)
f(x)=ax^3+3x^2+3x(a≠0),f'(x)=3ax^2+6x+3,△/4=9-9a,1)i)a
f(x)=a+ax−1,f(x)图象是由反比例函数y=ax,向右平移1个单位在向上或下平移|a|单位得到的,∵a<0时,y=ax在(-∞,0),和(0,+∞)上分别为增函数,a>0时,y=ax在(-∞
用导数证不行么 要简单的多假如用定义法那就如图难倒是不难但用定义法就得考虑所有的情况所以比较麻烦还不如导数了
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
(1):当f(x)为偶函数,令f(x)=(x)^(2*1/(x+a))=(-x)^(2*1/(-x+a))=f(-x)则1/(x+a)=1/(a-x),所以不成立.当f(x)为奇函数,令f(x)=(x
奇函数然后取fx2–fx1再答:谢谢。
f(x)=x+2/x,(1)设00从而有f(x1)-f(x2)
由于函数f(x)=axx+1=a-ax+1 在(2,+∞)上为增函数,故有a>0,故所求的a的范围为(0,+∞).