计算积分 ydx C由y=x^2 y=4 闭曲线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:35:14
计算积分 ydx C由y=x^2 y=4 闭曲线
计算曲线积分I=∫(X^2-y)dx-(x+cos^2y)dy,其中是L在上半圆周y=√((x-x^2)由点(0,0)到

令P=x^2-y,Q=-x-(cosy)^2∵αP/αy=αQ/αx=-1∴由格林定理知,此曲线积分与路径无关,只与始点和终点有关于是,计算此积分取路径为:y=0,0≤x≤1故I=∫x^2dx=1/3

多元函数积分计算设D是由y=√(1-x^2),y=x,y=0所围成的第一象限的部分,则 ∫ ∫ (D) (y/x)^2

利用极坐标变换:x=rcosay=rsina其中,0≤r≤1,0≤a≤π/4,记为D'因此,∫∫(D)(y/x)^2dxdy=∫∫(D')sina/(rcos^2a)*rdadr=∫(0,1)dr*∫

如题:设L是由曲线y^3=x^2与直线y=x连接起来的正向闭曲线,计算 (x^2)ydx+y^2dy的曲线积分(积分符号

设C是由曲线y³=x²与直线y=x连接起来的正向闭曲线,计算∮x²ydx+y²dy的曲线积分C:y=x^(2/3),y=x;区域D:由曲线C所围的区域;P=x&

计算二重积分xysin(x+y) 积分区域x=0 y=0 x+y=π/2

[-x*cos(x+y)]'=x*sin(x+y)-cos(x+y)x*sin(x+y)=cos(x+y)-[x*cos(x+y)]'以上是对x求导的结果.把y暂看作常数.二重积分,可以先把y看作常数

利用三重积分计算由曲面z= √(x^2+y^2),z=x^2+y^2所围成的立体体积

这是一个圆锥面和一个旋转抛物面相交的情形.画出图像就很容易定出积分上下限了.方法一:用三重积分计算体积,积分限为:0≤θ≤2π,0≤ρ≤1,ρ²≤z≤ρ,积分后的结果有v=π/6方法二:先用

计算三重积分题计算∫∫∫zdV,其中积分空间由曲面2z=x^2+y^2,(x^2+y^2)^2=x^2-y^2及平面z=

首先你要知道这个积分区域是什么:2z=x^2+y^2,旋转抛物面,(x^2+y^2)^2=x^2-y^2柱面,Z=0,不用说.(x^2+y^2)^2=x^2-y^2在极坐标下是r^2=cos2θ,由对

三重积分计算由曲面Z=(X^2+Y^2)^0.5和曲面Z=(X^2+Y^2)所围成的立体体积的三次积分!写出积分表达式就

可以用柱面坐标,立体体积=4∫(0,π/2)dθ∫(0,1)rdr∫(r²,r)dz=4π/2∫(0,1)(r²-r³)dr=2π(r³/3-r^4/4)|(0

用定积分计算由抛物线y=x^2,直线x=1,x=3,及x轴所围成的图形面积

抛物线y=x^2,直线x=1,x=3及x轴所围成的图形面积=∫(上限为3、下限为1)x^2dx=(1/3)x^3|(上限为3、下限为1)=(1/3)×3^3-1/3=9-1/3=26/3.

计算二重积分 ∫∫x(1+yf(x^2+y^2))dxdy,积分区间是由y=x^3,y=1,x=-1围成

积分区域是图中橙色部分与蓝色部分合起来,现作辅助线y=-x³,将区域分为橙色与蓝色两部分∫∫x(1+yf(x²+y²))dxdy=∫∫xdxdy+∫∫xyf(x²

高等数学计算三重积分计算三重积分下∫∫∫(D区域)(x^2+y^2)dxdydz,其中区域D由曲面z=[√(x^2+y^

首先围成的是下边是一个抛物面体上部是球的部分,让z1=z2,则交界处的交线方程是x^2+y^2=4,且对应的z=2,因为dv=r^2sinadado(a为r与z轴夹角,o为在xoy面内投影与x轴夹角)

计算积分∫∫ √y^2-xydxdy,其中D是由直线y=1,y=x,x=0围成的闭区域

看图片,不懂再问.再问:谢谢,我先看看

计算由直线y=x-4.抛物线y²=2x以及x轴所围成图形的面积S,若选择纵坐标y为积分变量,则积分区间为_.

直线y=x-4与抛物线y^2=2x联立得到(x-4)^2=2x得到(x-2)(x-8)=0得到x=2或8当x=2时,y=-2当x=8时,y=4所以选择纵坐标y为积分变量,则积分区间为[-2,4]S=∫

计算二重积分∫∫xydxdy ,其中积分区域 D是由y=x ,y=1 ,和x=2 所围成的三角 形域.D

X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x

由y=3-x^2,y=2x,所围成的面积.用定积分,

y=√x和y=x解得x=0,x=1题目变成定积分∫[0,1](√x-x)dx=[2/3x^(3/2)-1/2x^2][0,1]=1/6y=2x和y=3-x^2解得x=-3,x=1

计算曲线积分∫(e^x)(1-2cosy)dx+2(e^x)sinydy,其中L是由点A(派,0)经曲线y=sinx到点

P(x)=e^x-2e^xcosy,Q(x)=2e^xsiny∂P/∂y=2e^xsiny=∂Q/∂x因此积分与路径无关,选择A到O的线段y=0来做积分

求教:利用定积分计算由曲线y=x^3 - 6x和y=x^2所围成的图形面积.

主要是计算烦组合两个函数,求得两个交点是x=-2或3据图象,区间(-2,0)y=x^3-6x在上面,用牛莱公式,中间的f(x)是x^3-6x-x^2区间(0,3)时y=x^2在上面,同上,f(x)是x