计算曲线积分(x^2-y)dx-(x y^2)dy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 10:01:15
计算曲线积分(x^2-y)dx-(x y^2)dy
计算曲线积分I=∫(e^y+x)dx+(xe^y-2y)dy,L为从(0,0)到(1,2)的圆弧

再问:∫AB+∫DA是什么意思呢再答:被积函数在AB,0A直线上积分。被积函数省写了。

计算曲线积分I=∫(X^2-y)dx-(x+cos^2y)dy,其中是L在上半圆周y=√((x-x^2)由点(0,0)到

令P=x^2-y,Q=-x-(cosy)^2∵αP/αy=αQ/αx=-1∴由格林定理知,此曲线积分与路径无关,只与始点和终点有关于是,计算此积分取路径为:y=0,0≤x≤1故I=∫x^2dx=1/3

计算曲线积分∫L(e^(x^2)sinx+3y-cosy)dx+(xsiny-y^4)dy ,其中L是从点(-π,0)沿

先计算∫L3ydx=∫(从-pi到pi)3sinxdx=6.再计算∫L(e^(x^2)sinx-cosy)dx+(xsiny-y^4)dy=∫LPdx+Qdy,注意此时有aQ/ax=aP/ay,因此积

计算第二形曲线积分,(x^2ycosx+2xysinx-y^2e^x)dx+(x^2sinx-2ye^x)dy.期中L为

这个也算是技巧了啊...看到被积函数很复杂的时候就看看格林公式能不能用

计算曲线积分∫L (x^2+2xy)dx+(x^2+y^4)dy,其中L为点(0,0)到点(1,1)的曲线弧y=sin(

用格林公式啊,发现积分与路径无关,然后你就找一条最好简单的路径,比如(0,0)到(1,0)到(1,1),来算,最后1/3+1/5=8/15

计算坐标曲线积分 ∫(3x^2y+αx^2y)dx+(x^3-4x^2y)dy,求α

与路径无关说明(3x^2y+ax^2y)对y求导的结果与x^3-4x^2y对x求导的结果一致3x^2+2ax^2=3x^2-8xy2ax^2=-8xy如果默认a为常数的话,就没的做了你确定积分式没写错

用格林公式计算第二型曲线积分:∮(x²-y)dx+(y²+3x)dy

令P=x²-y∂P/∂y=-1令Q=y²+3x∂Q/∂x=3则∮_(L)(x²-y)dx+(y²+3x)dy=∫

利用格林公式计算曲线积分.∫ e∧x [cosy dx +(y-siny)dy],曲线为y=sinx从(0,0)到(π,

稍等再答:再问:补上之后应该是负方向吧,是不是加个负号。补上的应该是AO方向吧,那样答案是不是4/5倍的再答:补上的就是OA再答:我好像发少了一张图。再答:

曲线积分的问题计算第二类曲线积分∮y²dx+z²dy+x²dz,L为曲线x²+y

不是用格林公式吧,格林公式是计算平面的.好像题目错了吧,应该往z轴正方向才对,如果是往x轴正方向的话不就是一条线段了,怎么还有方向而言.用斯托克斯公式计算:原式=(-2)∫∫dydz+dzdx+dxd

一道简单的曲线积分计算对坐标曲线积分∫(6xy^2-y^3)dx+(6x^2y-3xy^2)dy为从点A(0,0)经曲线

答案:2.过程不详述了.这个积分是跟路径无关的,因为原函数是一个函数(3xxyy-xyyy)的全微分.在这种情况下,积分值等于原函数在起始点值的差.

计算曲线积分∮(x^3+xy)dx+(x^2+y^2)dy其中L是区域0

原积分=∫(0到1)(1+y^2)dy+∫(1到0)(x^3+x)dx+∫(1到0)y^2dy+∫(0到1)x^3dx=4/3-3/4-1/3+1/4=1/2.

计算曲线积分:∫(L)(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^2)dy.其中L是

计算曲线积分:∫(L)(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^2)dy其中L是在抛物线2x=πy^2上由点(0,0)到(π/2,1)的一段弧.———————————————

证明曲线积分∫(2,1)—(1,0)(2x-y^2+1)dx+(1-x^2y)dy与路径无关的计算

你的题目错了吧?Pdx+Qdy中如果满足1、P,Q具有一阶连续偏导数;2、∂P/∂y=∂Q/∂x,则积分与路径无关你现在的题目中:P=2x-y²

计算曲线积分 ∫(x^2-y^2)dx,其中l是曲线y=x^2上从点(0,0)到点(2,4)的一段弧

∫(x^2-y^2)dx=∫0~2(x^2-x^4)dx=-56\15如果是∫(x^2-y^2)dL=∫0~2(x^2-x^4)√(1+4x^2)dx这里的区别就是dx和dl,做题目的时候要看清楚呀.

计算曲线积分∫(e^x)(1-2cosy)dx+2(e^x)sinydy,其中L是由点A(派,0)经曲线y=sinx到点

P(x)=e^x-2e^xcosy,Q(x)=2e^xsiny∂P/∂y=2e^xsiny=∂Q/∂x因此积分与路径无关,选择A到O的线段y=0来做积分