角ABC内接于圆O AD是角ABC的边BC上的高
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:14:54
角CAB+角ABC=90度角MAC等于角ABC所以角MAC+角CAB=90度=角MAB,为直角,MN为切线
(1)∵∠ACB=∠ABF=∠ABC,(圆周角等于弦切角)∴AB=AC(底角相等的三角形是等腰三角形).(2)连接DB,∵∠ADB=∠ABF=∠ABC,∴△ADB∽△ABE.∵AD=4,cos∠ABF
你这一题缺少条件,怎么缺少条件呢,我给你讲讲其实这道题角ABC=50度这个条件是可以变动的,你可以把B点画到圆弧AD的任意一点中,想想看,当把点B画到A点的旁边一点点,再构造一个角ABC=50度,同样
二者相等.把CO延长为直径CE,连结AE,△ACE是RT△,(半圆上的圆周角是直角),〈CDB=90°,〈CDB=〈EAC,〈CEA=〈CBA(同弧圆周角相等),〈ACO=180°-90°-〈AEC,
延长AO交园边于点K,连接KC并延长交AP于E\x09\x09\x09\x09∵∠B=∠K(两角都是弦AC的圆周角相等)\x09\x09\x09\x09∵∠PDA=∠PAD ( P
正确答案有2个各为(1),(2)连接OAOB则OA=OB因为D为中点所以AD=BD因为OD=OD所以三角形AOD全等于三角形BOD所以角ADO=角BOD=90度所以DE是AB的中垂线所以AE=BE
(1)证明:∵AB是⊙O的直径∴∠ADB=∠ACB=90°∵DE⊥AB∴∠DEA=90°∴∠ADE=∠ABD(都是∠DAE的余角)∵∠DAC=∠DBC(同弧所对的圆周角相等)∠DBC=∠ABD(BD平
(1)证明:∵AB为直径,∴∠ACB=∠ADB=90°∵BD平分∠ABC∴∠CBF=∠FBA∵∠DAF+∠AFD=90°∠CBF+∠BFC=90°∠AFD=∠BFC(对顶角相等)∴∠DAF=∠CBF=
1.如图(图略),∵⊙O中,GH是直径,GH⊥AB,∴弧AH=弧AB,∴∠AOH==(1/2)AOB,∵∠E=∠ACB-∠EDC,又∠ACB=(1/2)AOB=∠AOH,∠EDC=∠ADH,∴∠E=∠
∵OA=OC∴∠OAC=∠OCA又∠OAC+∠ABC=90而∠DCB+∠ABC=90∴∠OAC=∠OCA=∠DCB而CE平分∠OCD则∠ACE=∠OCA+∠OCE=∠BCD+∠DCE=∠BCE则弧AE
证明:∵OE∥AC∴△BOE∽△BCA∴OB/BC=BE/AB∴BE=AB*OB/BC∵OB是半径,BC是直径∴BC=2OB∴BE=AB*OB/2OB=AB/2∴BE=AE又∵∠BAC是直径所对圆周角
∵∠ACB=90°(直径对直角)∵CD是角平分线∴∠FCB=∠FCA=45°∵AE垂直CD于H∴∠CAH=45°∴∠CAH=∠FCB又∵∠B=∠E(同弦对等角)∴三角形ACE相似于三角形CFB
证明:连接AD,BD因为DC平分∠ACB所以∠ACD=∠BCD所以弧AD=弧BD所以点D是弧ADB的中点连接OD,根据垂径定理OD⊥AB因为L是切线所以OD⊥L所以AB‖L(同垂直于一条直线的2条直线
连结OE,交BC于F,AE与BC交于G,∵OA=OE,则∠OAE=∠E∵E为弧BC中点,∴OE是BC的垂直平分线∵∠FGE=∠DGA,∴Rt△FGE∽Rt△DGA,∴∠E=∠DAE∴∠DAE=∠OAE
(1)连接DC,过点D做AC的垂线交AC的延长线于F由于AD是角平分线,DE=DF此外角ABD=角DCF,角DEB=角DFA故而三角形BED全等于三角形CFDBE=CF,从而AC+BE=AC+CF=A
(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC∵AB是圆O的直径,∴BC⊥AC∵DC∩AC=C,∴BC⊥平面ADC.∵DE∥BC,
∵劣弧BC的度数为120°∴∠BAC=60°∴∠ABC+∠ACB=120°∵BD平分∠ABC,CE平分∠ACB∴∠CBD+∠ECB=12(∠ABC+∠ACB)=60°∴∠CFD=60°∴∠BFE=60
应该是∠CAD=∠ABC吧证明:∵AB是圆的直径∴∠C=90°∠B+∠CAB=90°又∠CAD=∠B∴∠CAD+∠CAB=90°∠DAB=90°即OA⊥ADOA是半径∴AD与圆O相切
连结OE∵OA=OE∴∠E=∠OAE∵AE平分∠OAD∴∠E=∠OAE=∠DAE∴OE‖AD∵AD⊥BC∴OE⊥BC∴弧CE=弧BE
因为角BOC=120度所以角BAC=60度因为AB=AC,角BAC=60度所以角ABC=角BAC=角ACB=60度弧AB=弧AC=弧BC=120度