规定每次只能登上一级或两级,要登上第十级
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:14:10
8种吧我画了一个树状图就行了,没法发照片额再问:请问具体怎么走?再答:
1.没有跨两级的情况:每次跨一级,1种跨法;2.有一次跨两级:需要跨9次,9次中选取一次跨两级,即9选1,有C19=9种情况;3.有两次跨两级:需要8次,8次中选取2次跨两级,即8选2,有C28=28
全21种全11种1个29种2个28*7=5656/2=28种3个27*6*5=210210/(3*2)=35种4个26*5*4*3=360360/(4*3*2)=15种1+1+9+28+35+15=8
89再问:WHY再答:可以分六种类型,走5,6,7,8,9,10次,10次:有1种,9次有:9种,8次有:28种,7次:有35种,六次有:15种,5次有:1种,共89种再问:不明白再答:用排列组合做,
这个不能巧算,只能一个个可能性列下去,共21种
这题用递推.因为每一步只能上一级或两极,所以上1级楼梯有1种走法,上2级楼梯有2种走法.而上第3级楼梯的前一步,肯定是要上到第2层楼梯或第1层楼梯(因为每一步只能上一级或两极,反推,要上第3层,前一步
第一级:只跨1步,有1种;第二级:(1、1),(2),有2种;第三级:(1、1、1),(1、2),(2、1),有1+2=3种;第四级:(1、1、1、1),(1、1、2),(2、1、1),(2、2),(
f(n)=f(n-1)+f(n-2)+f(n-3)f(1)=1f(2)=2f(3)=4f(4)=7f(5)=13f(6)=24f(7)=44f(8)=81f(9)=149f(10)=274f(11)=
要登上第1级台阶,只有1种不同的走法要登上第2级台阶,共有1+1=2种不同的走法要登上第3级台阶,共有1+2=3种不同的走法要登上第4级台阶,共有2+3=5种不同的走法要登上第5级台阶,共有3+5=8
登上1个台阶1种方法,登上2个台阶2种方法,登上3个台阶3种方法,台阶数量多时,这样思考:登上4个台阶,如果先跨1个台阶还剩3个台阶3种方法再上去;如果先跨2个台阶还剩2个台阶2种方法再上去,3+2=
64种,先判断从底部起用12步登上该阶梯顶部,分别登上一级台阶和两级台阶的步数,(12*1
小学生回答:这是排列组合问题.规定每次只能跨上一级或两级,就认为这个数为一或二,要登上第九级,就认为和是九.也就是说,一和二这两种数加起来等于九就符合条件.1、如果全是1,就是九个1相加,只有一种2、
分类计算,以上楼梯步数分为六步,七步……到十二步,之后求不同步数的走法总和.就行了再问:这个要算好久呢,你给我答案我就知道采纳你。再答:我可以给你讲思路,但绝不能直接告诉你答案再问:给我答案吧,我赶集
5=1+1+1+1+11种5=1+1+1+22的位置有4种可能4种5+1+2+21的位置有3种可能3种总共1+4+3=8种可能
这是排列组合问题共55种走法走9步:1种走8步:8种走7步:21种走6步:20种走5步:5种如果学过排列组合的话就会明白的
上楼梯问题(四)有一堆火柴共12根,如果规定每次取1~3根,那么取完这堆火柴有多少种不同的取法?分析:可以先把问题转化,将12根火柴看作12级台阶,把规定每次取1~3根,看作每次只能登上1~3级台阶.
到达第一级台阶:1种走法到达第二级台阶:2种走法到达第三级台阶:2+1=3种走法(因为它包括由第二级台阶到的和第一级台阶到的,下同理)到达第四级台阶:3+2=5种走法……到达第九级台阶:34+21=5
111111这种情况下是1种.11112这种情况下,2插入到4个1中,有5种情况1122这种情况下,4个数排列,排法数为4*3*2*1=24,因为有两个1相同,所以有24/2=12,又因为有两个2相同
1级:1种;2级:2种;(走1级或走2级)3级:3种;(全走1级,走1+2或2+1)4级:5种;(全走1级,2+1+1,1+2+1,1+1+2,2+2)5级:8种;(全走1级,2+1+1+1,1+2+