被抛物线y^2=2bx的焦点分成5:3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:35:17
y^2=ax焦点是M(a/4,0)y=ax^2,即x^2=y/a,焦点是N(0,1/4a)MN²=a²/16+1/16a²≧1/8所以,最小值是√2/4希望能帮到你,如果
y^2=4x,抛物线的焦点F(1,0)设圆心为(a,b),半径为r圆与x轴相切,那么r=|b|,圆与抛物线准线x=-1相切,则a+1=|b|又b^2=4a∴(a+1)^2=b^2=4a解得a=1,b=
y=x^2==>p=1/2设:A(x1,x1^2),B(x2,x2^2)根据抛物线的切线公式得:AP的方程是:2x1x-y-x1^2=0----------------------------(1)B
三角形APB的重心G的轨迹方程是:y=1/3(4x^2-x+2)这里打不下,看这个回答就可以
(1):→P(1,-2)y`=x/2,设A(m,m²/4),B(n,n²/4)在A点切线斜率k1=m/2在B点切线斜率k2=n/2PA直线斜率:k1=(m²/4+2)/(
x²=-y/2=-2py,p=1/4,开口向下,焦点(0,-1/8)左右上y²=-2x=-2px,p=1,开口向左,焦点(-1/2,0)y²=12x=2px,p=6,开口
令x=0得y=-2;令y=0得x=4;∴抛物线的焦点坐标为:(4,0),(0,-2)--------------------------------------------------(4分)当焦点为
抛物线y=ax^2+bx+c关于x轴对称的抛物线解析式:y=ax²-bx+c抛物线y=ax^2+bx+c关于原点对称的抛物线解析式:y=-ax²+bx-c抛物线y=a(x-h)^2
我认为是y=ax^2-bx+c
原式化为(x+1)²+2=y,相当于x²=y的图像向左平移1个单位,又向上平移2个单位,故焦点坐标为(-1,9\4)
x²=2py,焦点为(0,p/2),准线为y=-p/2y=ax²,x²=y/a,此时p=1/(2a),焦点为(0,1/(4a)),准线为y=-1/(4a)
抛物线y^2=2bx,的焦点坐标是F(b/2,0)F1F2被F分成了7:5的二段,则有F1F/FF2=7/5,即有(b/2+c)/(c-b/2)=7/5即有7(c-b/2)=5(c+b/2)7c-7b
准线:y=-1/4+(4ac-b^2)/4a焦点:(-b/2a,1/4+(4ac-b^2)/4a)把题目中的方程配方可得到该方程与y=x^2的平移关系,再把y=x^2的准线与焦点对应的平移就可以了
过M作MN//x轴交准线x=-2于N则:MF=MN所以,MP+MF=MP+MN≥PN所以,P、M、N三点共线时,MP+MF值最小所以,M点纵坐标=P点纵坐标=-1M点横坐标=(-1)^2/8=1/8即
F(1,0)由于AB不可能平行y轴,可设AB:ky=x-1(x-1)^2=y^2k^2=4xk^2x^2-(2+4k^2)x+1=04=x1+x2=2+4k^2k=根号2/2x^2-4x+1=0|x1
x平方=y/22p=1/2p/2=1/8开口向上所以焦点是(0,1/8)
设交点是(x1,0),(x2,0)则AB=|x1-x2|由韦达定理x1+x2=-b/ax1x2=c/a所以(x1-x2)²=(x1+x2)²-4x1x2=b²/a&sup
y=x-3与坐标轴两个交点为(0,-3),(3,0)三个点均为抛物线上的点,则a-b+c=0c=-39a+3b+c=0解得,a=1,b=-2,c=-3解析式y=x^2-2x-3顶点坐标公式为(-b/2
x^2+y^2+4y=0x^2+(y+2)^2=4圆心为(0,-2)则抛物线焦点为(0,-2)位于y轴负半轴.则抛物线的方程为:x^2=-8y在抛物线x2=-2py中,焦点是(0,-p/2),准线的方
y=4x^2的焦点坐标:(0,1/16)不好意思,刚才写错了,标准方程应该是:x^2=2py标准方程:x^2=2py,焦点坐标(0,p/2)x^2=y/4=2*1/8*y所以p=1/8即焦点坐标是:(