行列式中其中一列是1234,为什么提出10

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:27:25
行列式中其中一列是1234,为什么提出10
设n阶行列式|A|=0,对非齐次线性方程组Ax=b,若将b与A中其中一列交换,得到的行列式至少有一个不为零

该方程组无解因为|A|=0,所以R(A)=n,故R(A,b_=n再问:"得到的n个行列式中至少有一个不为零所以R(A,b)>=n"这里可以说详细一点吗?再答:行列式不等于零则秩等于n

线性代数:行列式:性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零.两组数成比例是

举个例子〜再答:例如行列式中有两行数分别为:1234(记为a)、2468(记为b),则a=2b,它们成比例。即一行元素可以分别表示为另一行对应元素的倍数,就说这两行成比例。(通过行列式的

第三题,根据行列式的性质,一行或一列元素全为0,为什么此行列式不得0?答案是【(-1)^(n-1)】n!急求解答,多谢

没有全零的行或列再答:由行列式的定义D=(-1)^t(234...n1)*n!=(-1)^(n-1)*n!再答:其中t()表示排列的逆序数再问:噢噢,看错了,但是为什么后面直接就n!了呢再答:这n个非

设n阶行列式中有n(n-1)个以上元素为0,证明该行列式为0

n阶行列式中有n(n-1)个以上元素为0,不妨令其最小值n(n-1)+1个元素为0,即有n^2-n+1个元素为0.(n^2-n+1)-n=n^2-2n+1=(n-1)^2≥0当n=1时取等号.因为n阶

设n阶行列式中有n^2 -n个以上的元素为零,证明该行列式为零

n阶行列式中有n^2-n个以上的元素为零,即n阶行列式中非零的元素

设A=(aij)3*3为非零实矩阵,aij=Aij,Aij 是行列式|A|中元素aij的代数余子式,则行列式|A|

因为aij=Aij,所以|A|=|A*|由A^(-1)=A*/|A|得|A|A^(-1)=A*两边取行列式|A|³|A^(-1)|=|A*||A|³/|A|=|A||A|=1

线性代数中|λE-A|其中λE是什么意思?其中A是已知的n阶行列式,不知道λE是什么就让求|λE-A|,

其实|λE-A|表示矩阵A的特征多项式,其中E是n阶单位阵,λE就是n阶单位阵的λ倍,那么行列式|λE-A|展开就是关于λ的n次多项式

线性代数中行列式是怎样计算的

这儿做起来不难就是说起来很麻烦你看看资料吧

五阶行列式中a21a13a54a32a45 的符号为?

+看行序21534看列序13425看行序逆序个数2看列序逆序个数2(-1)^(2+2)=1结果为+

线性代数求行列式:n阶行列式,除主对角元素全是aij-r外,其他元素均为aij,其中(1=

将D按第1列分拆,其中一列为r,0,...,0D=-rA11+D1再将D1按第2列分拆D=-rA11-rA22+D2如此下去得D=|aij|-r(A11+A22+...+Ann)如果没有其他条件,只能

一道线性代数问题.图中第八题是怎样得到A的行列式为1的?

经济数学团队帮你解答,有不清楚请追问.请及时评价.

学线代的时候想到:值为0的n阶行列式经初等变换后是否一定可将其中一行(或一列)的元素全部化为0 如果是的话,感觉在关于矩

你的思考是对的,值为0的n阶行列式经初等变换后一定可将其中一行(或一列)的元素全部化为0.事实上,对应数字行列式,我们总是经初等变换化为上三角形行列式来计算,如果n阶行列式的值为0,则化为上三角形行列

如果一个n阶行列式有一行或是一列全是1 证明此行列式等于它的所有元素的代数余子式之和

楼上说的虽是不错,但还不足以完全解决问题,另外需要证明其余元素的代数余子式之和为零.当然这个也很容易,比如第i行全为1,那么第j行的元素的代数余子式之和为零,因为这相当于一个两行都为1的行列式的值.

矩阵中如果有一行或一列的元素全为0,则其所对应的行列式的值为0.也就是说如果矩阵不是线性无关也就是不是满秩矩阵时,其所对

对,行列式为0的必要条件是行列式中向量线性相关,所以,在不满秩=奇异=不可逆再问:也就是可逆矩阵=非奇异矩阵=满秩矩阵==也就是线性无关矩阵,对吧谢谢再答:没错

为么计算行列式时行列中元素对应减另一行列中元素行列式值不变?

行列式由数或别的元素组成的方阵,其值由某种这些元素的组合规律决定,它通常行列中的一项长方形排列术语中的阵成行列式

关于行列式的性质下面是高中行列式的性质5,请问怎么理解?可否举例说明?性质5:如果行列式某一行(或一列)的元素都是二项式

举个例子,好比三阶行列式a11a12a13a21a22a23a31a32a33假如任取一行(或者列)比如取a11,a12,a13第一行假如a11=b11+c11,a12=b12+c12,a13=b13

五阶行列式中a44a15a51a23a32 的符号为

a44a15a51a23a32=a15a23a32a44a51逆序数t(53241)=4+2+1+1=8所以此项的符号为正.

n阶方阵A与B等价,它们的行列式一定相等么?若其中一个行列式为零呢?

1.不一定,因为方阵A经过三种基本初等行或列变换B,称A与B等价,单单第二种初等变换即乘以非零常数,即改变行列式值,所以一般情况下是不相等的2.若其中一个行列式为零,即R(A)=R(B)