学线代的时候想到:值为0的n阶行列式经初等变换后是否一定可将其中一行(或一列)的元素全部化为0 如果是的话,感觉在关于矩
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 03:46:09
学线代的时候想到:值为0的n阶行列式经初等变换后是否一定可将其中一行(或一列)的元素全部化为0 如果是的话,感觉在关于矩阵秩有些性质和定理中可以比较容易很快理解.如何证明这个命题的真伪.
你的思考是对的,值为0的n阶行列式经初等变换后一定可将其中一行(或一列)的元素全部化为0.
事实上,对应数字行列式,我们总是经初等变换化为上三角形行列式来计算,如果n阶行列式的值为0,则化为上三角形行列式时,至少有最后的一行或几行元素都为0,否则,若三角形行列式所有各行元素都不全为0,则主对角线上的元素都不为0,从而行列式的值不为0,矛盾.
事实上,对应数字行列式,我们总是经初等变换化为上三角形行列式来计算,如果n阶行列式的值为0,则化为上三角形行列式时,至少有最后的一行或几行元素都为0,否则,若三角形行列式所有各行元素都不全为0,则主对角线上的元素都不为0,从而行列式的值不为0,矛盾.
学线代的时候想到:值为0的n阶行列式经初等变换后是否一定可将其中一行(或一列)的元素全部化为0 如果是的话,感觉在关于矩
可逆矩阵行列式不为零,可逆矩阵一定可化为单位矩阵,进行初等变换矩阵是等价的啊!
设A为n阶行列式,B是A经过若干次矩阵的初等变换后得到的矩阵,则有 (A)若|A|>0,则一定有|B|>0
第三题,根据行列式的性质,一行或一列元素全为0,为什么此行列式不得0?答案是【(-1)^(n-1)】n!急求解答,多谢
行列式有一行或者一列的所有元素都是0,行列式的值等于0么?
如果一个n阶行列式有一行或是一列全是1 证明此行列式等于它的所有元素的代数余子式之和
矩阵中如果有一行或一列的元素全为0,则其所对应的行列式的值为0.也就是说如果矩阵不是线性无关也就是不是满秩矩阵时,其所对
线性代数小问题对于任意的矩阵A,运用初等变换将其化为下三角阵之后,对角线上的元素是否就是它的特征值?
设A为n阶方阵,B是A经过若干次矩阵的初等变换后所得的矩阵,则有 A |A|=|B| B 若 |A|=0,则一定有|B|
一个行列式第一行与第一列以外的元素都是0,这个行列式一定为0吗?答案是不一定,为什么
对于行列式或矩阵的初等变换,可以同时使用行变换和列变换吗?
行列式与矩阵的初等变换!