虚拟变量多元线性回归不显著
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:46:59
不显著就应该剔除,除非你想硬塞进这个自变量,那你只有改数据了
这下通了,都是小问题:x1=[100101.9108.2104.01102.6103.6];x2=[174162.6233.8257322.4373.1];y=[88.9283.791.13127.2
纳入虚拟变量即可我替别人做这类的数据分析很多的
哥们自己看吧,我没耐心,你有时间就琢磨一下吧!
你这里面从各个变量的t检验看显然有变量不显著,把这些变量剔除掉重新建立新的回归模型就是了,哪儿有在这种伪回归的情况下纠结方差分析是不是显著的……再问:那有无回归模型显著,但有个别变量不显著的情况,请教
如果是非常不显著,建议删除,其它情况比如15%的水平下是显著的,建议保留,这得根据实际问题来.可以试着先将最不显著的剔除掉,再看看方程,也许就会出现显著系数增多的情况,建议一个个删除.
因为在多元回归分析的过程中,会自动剔除一些对于因变量无显著影响的变量你只是用简单相关分析的不准确,有可能是变量之间存在一些共线性所以导致单个都相关,而在多元回归分析时会有些变量被剔除了,回归方程可以用
常量系数为负是什么意思怎么分析,而且如果在显著性水平sig大于0.5这合理不?第一,常量估计值并不是负的,而是6.353.第二,其它的解释变量中,有三个系数是负值,这说明,这些自变量与因变量是反向即负
这句话分两种情况考虑,第一,在一元线性回归的情况下,由于只有一个系数需要检验,所以回归方程的F检验与系数的T检验的结果是一直的.第二,在多元线性回归的情况下,方程总体的线性关系检验不一定与回归系数检验
x=[143145146147149150153154155156157158159160162164]';X=[ones(16,1)x];增加一个常数项Y=[88858891929393959698
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
用MINITAB来分析如果是用EXCEL的话,用"工具栏"里的"数据分析"中,选定"回归",再选定数据做分析就可以了.
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
因为以估计系数=0为原假设,才可以构造出已知分布的检验统计量,再代入具体的样本值,可以确定是否有小概率事件发生,以此来决定是否推翻原假设.
嗯,在分类变量中包括二分类的变量和多分类的变量,其中二分类的变量改成虚拟变量,只要将一类赋值为0,另一类赋值为1就可以了,0作为对照组;如果是多分类的变量,改成虚拟变量时,需要设立分类数减1的虚拟变量
显著性在你给的条件下没有定义.首先OLS的多元回归,实际上是这样:解方程y=b0+b1x1+b2x2,如果你的数据多于m+1个(我们就以你的这个例子说吧,就是多于3组数据,比如100组),这个时候方程
a=[320320160710320320320];f=[0.180.180.180.180.090.360.18];v=[2.31.71.71.71.71.71];F=[38.829.2326.53
http://hi.baidu.com/zhangkai1201/blog/item/c2bf22039bf73983d53f7c64.html
看你理论上怎么解释如果这个变量需要留着那你就可以不用理共线性如果无关紧要的话一方面需要考虑模型设置的合理性问题,另一方面需要运用计量软件进行校正调试再问:谢谢您的回答。我想研究的是X1对X2的回归系数
虚拟变量,你可以试试0-1这样的虚拟变量,含0的,对应的y低,含1的对应的y高(假设正相关).其实主要看你的虚拟变量打算加在哪里,加在常数项就这么做,加在系数项的话就是另外一组数据了.你可以先写个含虚