若级数un2与vn2收敛 证明级数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:08:00
若级数un2与vn2收敛 证明级数
怎么证明一个收敛级数与一个发散级数之和发散

反证法假设(一个发散级数∑An加上一个收敛级数∑Bn)结果∑(An+Bn)发散不正确即∑(An+Bn)收敛那么由∑(An+Bn)收敛,∑Bn收敛,可知∑[(An+Bn)-Bn]收敛,即∑An收敛,与已

证明级数的收敛若级数an(n从1到无穷)收敛,数列bn收敛,证明级数anbn(n从1到无穷)收敛,提示说用柯西收敛准则,

这题明显少条件,如果bn是单调的就可以了.否则结论不成立.反例:an=(-1)^n/n^(1/2),级数an收敛.bn=(-1)^n/n^(1/2),数列bn收敛于0,但级数anbn=级数1/n是发散

用柯西准则证明级数收敛

这个级数一般不采用柯西准则,用比值判别法合适:由    lim(n→∞){[10^(n+1)]/[(n+1)!]}/(10^n/n!)=lim(n→∞)[10/(n+1)]=0根据比值判别法得知该级数

证明以下级数收敛 

这个需用Cauchy收敛准则来证明:对任意的epsilon>0,取N=[1/epsilon]+1,则对任意n>N及任意的正整数p,有   |∑(1≤k≤p)[1/(n+k)²]|  ≤∑(1

证明:若级数 ∑Un^2及 ∑Vn^2收敛,则 ∑(Un/n)收敛

你有问题也可以在这里向我提问:

条件收敛级数与绝对收敛级数的一个问题

①前一个级数的绝对值级数【1/(n*n)】是收敛的,故前一个级数绝对收敛②后一个级数本身是收敛的,但是它的绝对值级数【1/n】是发散的,故后一个级数是条件收敛①②都是根据条件收敛、绝对收敛的定义得到的

证明级数绝对收敛若级数∑an绝对收敛,且an≠-1(n=1,2,…),证明:级数∑an/(1+an)收敛.

证明:∑an绝对收敛,∴an->0,那么存在N>0,使得n>N时,有|an|1+an>1/2=>1/(1+an)|an|/(1+an)∑|an/(1+an)|∑an/(1+an)收敛

证明级数收敛题! 

单调有界准则进行证明.(1-an/an+1)-(1-an+1/an+2)

级数的收敛与发散性,BD分别怎么证明,

B:有比值判别法(记得复习),lim(n->00)an+1/an=e/PI再问:收敛+发散就等于发散????再答:这个是的,因为如果她不发散就收敛,收敛加收敛还是收敛,就不发散了。再问:那发散加发散还

证明级数收敛.

交错项级数判断敛散性,用莱布尼兹判别法:令1/√n=x显然e^x-1-x求导后可以看出它是根据x的增大而增大,由于同增异减,当n增大时,x减小,故里面也在减小,且极限为0满足莱布尼兹定理,所以原级数收

证明级数绝对收敛 

再问:万分感谢再答:不客气,我也正在学,练练手

级数Un^2收敛,证明Un收敛

这是错的.比如Un=1/n

证明级数收敛问题! 

由正项级数的比较判别法可知题中级数收敛再问:可不可以采用阿贝尔定理活狄利克莱定理??