若矩阵A满足A² 2A E=0则A的特征值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:51:20
若矩阵A满足A² 2A E=0则A的特征值为
若矩阵A满足A^2-3A+2E=0(*)则A的特征值有_____

A^2-3A+2E=0(A-E)(A-2E)=0说明f(x)=(x-1)(x-2)是A的一个化零多项式.A的最小多项式m(x)是f(x)的因式.f(x)没有重根,则m(x)也没有重根.m(x)无重根,

如果N阶矩阵A满足A^2=A,则称A是幂等矩阵.证明幂等矩阵的特征值只能是0或1

因为A^2=A=AI,所以A(A-I)=0所以A或A-I的行列式等于0A的行列式等于0说明特征值是0A-I的行列式等于0说明特征值是1

若对称矩阵A满足A^2=0,证明A=0.

用这个思路证.因为A2=0,且A为对称矩阵(即a(i,j)=a(j,i)),所以矩阵A里面的任一元素满足∑a(i,j)?j,i)=0,所以a(i,j)=0.因为a(i,j)是任意的,所以A=0.得证.

设非零矩阵A是m*s矩阵,B是s*n矩阵满足AB=0,则R(A)

不对.反例:A:ab00cd00B:00001234A:2×4矩阵,a,b,c,d任取.B:4×2矩阵,R(B)=2AB=0

如果一个矩阵满足A^2+4A+3I=0则这个矩阵的特征值是多少?

显然t^2+4t+3=0是矩阵A的化零多项式,如果它是次最小化零多项式,则它就是A的最小多项式,此时它的两个根-1和-3均是A的特征值,否则由最小多项式能整除任何化零多项式以及t^2+4t+3=(t+

若方阵A满足方程A平方-2A+3I=0,则A,A-3I都可逆,并求它们的逆矩阵,如何证明?

证明:因为A^2-2A+3I=0所以A(A-2I)=-3I所以A可逆,且A^-1=(-1/3)(A-2I).又由A^2-2A+3I=0得A(A-3I)+A-3I+6I=0所以(A-3I)(A+I)=-

若n阶矩阵A满足A^2-A+E=0,证明A为非奇异矩阵

因为A^2-A+E=0所以A(A-E)=-E所以A可逆,且A^-1=-(A-E)=E-A

线性代数:若n阶矩阵A满足方程A^2 2A 3E=0,则(A)^-1=?

A^2+2A+3E=0A(A+2E)=-3E(A)^-1=-(A+2E)/3运算符号不对的话,自己修正.

设n阶矩阵A满足A^2+2A+3I=0,则A的逆矩阵?

因为A^2+2A+3I=0所以A(A+2I)=-3I所以A可逆,且A^-1=(-1/3)(A+2I).

若N阶矩阵A满足A^2-2A-3I=0,则矩阵A可逆,且A^-1=____

A^2-2A-3I=0即A(A-2I)=3I即A*(A-2I)/3=I,所以选D再问:第一步提了个A出来威慑么2后面会有个I?再答:因为这是矩阵相乘2A=2A*I,任何矩阵与单位矩阵的乘积不变.再问:

n阶矩阵A满足A²-3A+2E=0,-证明A-3E是可逆矩阵

刚看到因为A^2-3A+2E=0所以A(A-3E)=-2E所以A-3E可逆,且(A-3E)^-1=(-1/2)A.

若n阶矩阵A,B满足条件AB-A+2E=0,则矩阵AB-BA+2A的秩为?

因为AB-A+2E=0所以A(B-E)=-2E所以A可逆,且(B-E)A=-2E所以BA-A+2E=0所以AB=BA所以r(AB-BA+2A)=r(2A)=n.

A满足A=A^2 证明A单位矩阵,不可逆矩阵

A(A-I)=0如果A≠I则A不可逆

已知n阶矩阵A满足矩阵方程A^2-2A-3E=0,且A-E可逆,求A-E的逆矩阵?

因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).

已知n阶方阵A满足 A^2-3A+E=0,则A的逆矩阵为多少?

A^2-3A+E=03A-A^2=E(3E-A)A==EA^(-1)=3E-A

若N阶矩阵满足A*A-2A-4I=0,试证A+I可逆,并求(A+I)的逆矩阵

题目告诉你(A+I)(A-3I)=I即A+I可逆且其逆为A-3I

设a是n阶实对称矩阵,且满足A^2+2A=0,若kA+E是正定矩阵,则k的取值范围

由A^2+2a=0知道,A的特征值都是方程x^2+2x=0的根,所以A的特征值是0与-2,那么kA+E的特征值是k*0+1与k*(-2)+1,即1与1-2k,要想kA+E正定,则1-2k>0,所以k<

已知矩阵A满足A^2-2A-8E=0,则(A+E)^-1=

这种题的方法是他要求哪个矩阵(比如A)的逆矩阵(B)就构造出含那个矩阵的AB=E,这样的式子,B就是逆矩阵A^2-2A-8E=0(A+E)(A-3E)=5E(A+E)(A-3E)/5=E故(A+E)^

设n阶矩阵A满足A^2-5A+5E=0,其中E为n阶单位矩阵,则(A-2E)^(-1)=

首先A^2-5A+6E=E,而A^2-5A+6E可分解为(A-2E)x(A-3E),所以(A-2E)^(-1)=A-3E.