若直线l与抛物线y²=8x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 16:36:10
若直线l与抛物线y²=8x
已知直线l:y=k(x+1),抛物线C:y²=4x.则与C有一个公共点的直线l有几条?

三条,k=±1时,是切线,k=0时,为对称轴;三条直线方程为:y=x+1,y=-x-1,y=0

已知抛物线y∧2=4x.F是焦点,直线l是经过点F的任意直线,若直线l与抛物线交于两点AB.且OM⊥AB求动点M的轨

F(1,0)过F点的直线AB:y=kx-kOM⊥AB那么OM的斜率为-1/kOM:y=-x/ky=-x/ky=kx-k-x/k=kx-kk^2=x/(1-x)x取值为(0,1)当l为垂直于x轴的直线是

跪求圆锥曲线题解已知圆C1:(x+4)^2+y^2=16抛物线C2:y^2=-4x直线L:y=kx+1若直线与抛物线C2

你先看一下我给你画的图,你就明白这个题目怎么做了.实际上,我图上做了4条直线 L1,L2,L3,L4(设定其K值分别为K1,K2,K3,K4 ) 这四条直线是符合&nbs

已知直线L:Y=X+m与抛物线Y平方=8X 交于A,B两点 若绝对值AB等于10 求M的值

∵A、B都在直线y=x+m上,∴可分别设A、B的坐标为(a,a+m)、(b,b+m).联立:y=x+m、y^2=8x,消去y,得:(x+m)^2=8x,∴x^2+(2m-8)x+m^2=0.显然,a、

斜率为-1的直线L经过抛物线y方=8x的焦点,且与抛物线相交于A、B两点,求线段AB的长

y²=8x,焦点F(2,0),准线为x=-2又k=-1,所以,AB的方程为:y=-(x-2),即:y=-x+2设A(x1,y1),B(x2,y2),分别过A,B做准线的垂线AC,BDAB=A

直线l过抛物线y=8x^2的焦点,若抛物线上存在两个不同的点A,B关于直线l对称,求直线l斜率的取值范围

直线l斜率k=∞A,B关于直线l对称,而l经过焦点,所以A、B到焦点的距离相等.根据抛物线性质,到焦点的距离等于到准线的距离,所以A、B到准线的距离相等,所以直线AB平行于x轴,直线l和y轴重合,斜率

已知抛物线y平方=8x,直线l过抛物线的焦点F,且倾斜角为45,直线l与抛物线交于CD两点,

设C(x1,y1)D(x2,y2)由题目可知:p=4那么焦点F(2,0)因为直线的倾斜角为45,所以斜率为1所以直线方程为:y=x-2带入抛物线方程中有:(x-2)^2=8x即是:x^2-12x+4=

已知抛物线C:X²=4Y,若过M(-1,0)的直线L与抛物线C交与E,F两点,

过M(-1,0)的直线L:y=ax+a与X²=4Y相交,得交点方程:X²=4ax+4a,即:X²=4ax+4a,X²-4ax-4a=0,要有两个交点:16a^2

1.已知抛物线Y^2=-X与直线L:Y=K(X+1)相交于A,B两点,

解(1)分别设OA,OB的斜率为k1,A(x1,y1),B(x2,y2)∴k1=y1/xi,k2=y2/x2解y²=-xy=k(x+1)得k²x+(1+2k²)x+k&s

已知抛物线y²=4x焦点为F过F的直线l与抛物线相交于A、B两点若l的法向量n=(1,-1)求直线l的方程

由y²=4x得p=2,所以F(1,0)又因为直线l法向量n=(1,-1),所以方向向量a=(-1,1)所以,斜率k=1,由点斜式方程有y-0=1(x-1),即直线l的方程x-y-1=0

抛物线C:y=x^2,直线l过点P(-1,-1)且斜率为k,若直线l交C与P1、P2两点.

1用k表示直线I,2联立抛物线C和直线I,3该方程有两个根,求出k的范围.第二问,1设Q点坐标,2用k表示P1和P2坐标,3把点QP1P2坐标带入上式,求出Q点轨迹.我用手机上网不好打字,以上步骤基本

已知斜率为2的直线L与抛物线y^2=4x相交于A B两点 若|AB|=5 求L的方程

设直线方程为:y=2x+b代入y^2=4x得y^2-2y+2b=0因为|AB|=根号(x1-x2)^2+(y1-y2)^2=根号(y1/2-y2/2)^2+(y1-y2)^2=根号5/4(y1-y2)

已知斜率为2的直线L与抛物线y^2=4x相交于A B两点 若AB=5 求L的方程

L的方程为y=2x+b,其中b为未知数.联立y=2x+b与y^2=4x,即为A、B点的坐标,设A为(x1,y1),B为(x2,y2).则AB的长的平方为(x2-x1)^2+(y2-y1)=5^2=25

已知抛物线C:y2=x与直线l:y=kx+34

设两点存在,分别为A(a2,a),B(b2,b),设AB的斜率为k′,k′=-1k,∴k′=a−ba2−b2=1a+b=-1k,∴a+b=-k,b=-k-a,设M(m,n),则m=a2+b22=(a+

若直线L过点(0,1),且与抛物线Y^2=4x只有一个交点,则直线L的方程是

显然x=0满足,当L不平行y轴时,设L方程为y=kx+1(kx+1)²=4x只有1个解k²x²+(2k-4)x+1=0当k=0时,-4x+1=0,x=1/4,L方程为y=

已知直线L:y=x+m与抛物线y平方=8x交于A.B两点.若oA垂直OB,求m的值

两式联立,求得一个方程x2+(2m-8)x+m2=0因为OA垂直于OB,所以两向量相乘=0X1X2+y1y2=0因为X1X2=c/a=m2y1y2=根号8X1乘以根号8X2=8m所以m2+8m=0解得

已知抛物线y^2=4x,直线l的斜率为1,且过抛物线的焦点 (1)求直线l的方程 (2)直线l与抛物线交于两点

(1)、∵抛物线方程为:y²=4x∴焦点坐标为(1,0)又∵直线l的斜率为1,且过抛物线的焦点∴直线方程为:y-0=x-1即x-y-1=0(2)、直线l与抛物线交于A、B两点∴将直线方程和抛

已知抛物线C:y=x²-2x+4和直线l:y=-2x+8,直线y=kx(k>0)与抛物线C交于……

1、直线L与抛物线的交点A,B满足方程y=x^2-2x+4=kx化简得:x^2-(2+k)x+4=0而A,B两点的横坐标就是此方程的两个解.即OA1=x1OB1=x2OA1*OB1=x1*x2=4OA

(2011•安徽模拟)已知直线l:y=k(x-2)(k>0)与抛物线C:y2=8x交于A,B两点,F为抛物线C的焦点,若

由题意得F(2,0),设A(m28,m),B(n28,n),m>0,n<0.∵|AF|=2|BF|,∴AF=2FB,∴(2-m28,-m)=2(n28-2,n),∴2-m28=2•n28-

过抛物线y平方=8x焦点的直线l与这个抛物线相交与A、B两点,设A,B中点M的纵坐标为-4,求直线l的方程?

2p=8p/2=2则F(2,0)设直线是a(y-0)=x-2x=ay-2y²=8x所以y²=8ay-16y²-8ay+16=0y1+y2=8a中点纵坐标是(y1+y2)/