若幂级数在z=3 2i处收敛,那么该级数在z=4的敛散性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:32:07
若幂级数在z=3 2i处收敛,那么该级数在z=4的敛散性
4 已知幂级数 ∞Σ n=1 cn(z + i)n在z = i处收敛,判别级数在z = 2处的敛散性

z=i时级为∞Σn=1cn(2i)^n收敛半径R=2所以根据阿贝尔定理在Z

幂级数的和函数在收敛域上为什么连续

因为在收敛域上,这些冥级数的和会表示成一个初等函数(也可能是非初等函数).比如e^x=1+x/1!+x^2/2!+x^3/3!+...+x^n/n!+.再问:谢谢!但是“幂级数的和函数在其收敛域上连续

求幂级数∑(n=1,∞) Z^n/n^2的收敛半径 即区间n=1至∞,n的平方分之一,乘以z的n次方的收敛半径.

可以用D'Alembert比值判别法.a[n]=1/n²,a[n+1]=1/(n+1)²,因此a[n+1]/a[n]→1.对z≠0,a[n+1]·z^(n+1)/(a[n]·z^n

求幂级数在收敛区间上的和函数.

这种问题现在没人手算了,都是计算机一步出结果.手算的话方法如下.第一问考虑下图中的F(x),待求的式子即是F'(x).第二问利用第一问的结论,答案是3;见下图.

利用幂级数的和函数的性质求幂级数在其收敛域上的和函数∑(+∞,n=1)nx^(n-1),

易知收敛域为(-1,1),因为nx^(n-1)=(x^n)的导数,所以∑nx^(n-1)=(∑x^n)的导数,求得和函数为1/(1-x)^2.再问:神人也!哈,请在详细点可否,小弟我可没那么聪明哦再答

若幂级数∑an(x-1)^n在x=-1处收敛,则此级数在x=2处(绝对收敛)

根据阿贝尔定理,级数在x=-1处收敛,则适合(-1,3)的一切x使该级数绝对收敛,x=2也在其中.

若幂级数 ∑an(n为下标)x^n 在X=3时收敛 则该幂级数在X的绝对值小于3时 收敛还是发散 为什么

当然收敛由幂级数收敛判断法则,此幂级数在x=3时收敛,则收敛半径R≤3,在此半径内任何一点都收敛

设f(x)=x/(2x^2+7x-4)在x0=-1处展开成幂级数,并求其收敛域

f(x)=x/(2x^2+7x-4)=(1/9)[1/(2x-1)]+(4/9)[1/(x+4)]=(-1/27){1/[1-(2/3)(x+1)]}+(4/27){1/[1+(1/3)(x+1)]}

求函数f(z)展开成幂级数的收敛半径(复变函数)

在0处泰勒级数收敛半径为pi/2;在0处罗伦级数收敛半径为pi/2再问:pi��ʲô�������������Ŀ����΢дһ�¹�̺��лл��再答:piΪԲ����f(Z)�ļ���Ϊcos(z

求区间(0,x)上∫sint/tdt在x=0处的幂级数展开式,并确定它收敛于该函数的区间

f(x)=∫sintdt/t=∫sintdt/t=∫∑(-1)^n*t^2ndt/(2n+1)!=∑(-1)^n*x^(2n+1)/[(2n+1)(2n+1)!](-∞

幂级数展开 f(z)=2z/z+2在点z=1展成幂级数,并求幂级数的收敛半径

http://hiphotos.baidu.com/zjhz8899/pic/item/fd73d4001e22e7277bec2c87.jpeg

求幂级数的收敛半径!∞∑ z^n/n!n=0

R=lim(n->∞)an/a(n+1)=lim(n->∞)1/n!/1/(n+1)!=lim(n->∞)(n+1)=∞

设幂级数∑(n=2→∞)an(x+1)^n在x=3条件收敛,则该幂级数的收敛半径为多少?求解答

收敛半径R=3-(-1)=4再问:解释一下可以吗?。。再答:条件收敛点只能在收敛域与发散域的分界点上

z/(z+1)(z+2)在z0=2处的泰勒展开式并指出收敛半径 详细步骤 急求!111

首先e^z的展开式:e^z=1+z+z^2/2!+z^3/3!+...+z^n/n!+...把z=(z/z-1)代入公式即可得到:e^(z/z-1)=1+(z/z-1)+(z/z-1)^2/2!+..

求幂级数∑(∞,n=1)n(n+1)x^n的在其收敛域的和函数

后项比前项的绝对值的极限=|x|收敛域:|x|再问:麻烦再问一下,答案第三行级数∑(n=1,∞)x^(n+1)为什么等于x^2/(1-x)????再答:首项x^2,公比x的等比级数求和