若幂级数在z=3 2i处收敛,那么该级数在z=4的敛散性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:32:07
z=i时级为∞Σn=1cn(2i)^n收敛半径R=2所以根据阿贝尔定理在Z
因为在收敛域上,这些冥级数的和会表示成一个初等函数(也可能是非初等函数).比如e^x=1+x/1!+x^2/2!+x^3/3!+...+x^n/n!+.再问:谢谢!但是“幂级数的和函数在其收敛域上连续
可以用D'Alembert比值判别法.a[n]=1/n²,a[n+1]=1/(n+1)²,因此a[n+1]/a[n]→1.对z≠0,a[n+1]·z^(n+1)/(a[n]·z^n
这种问题现在没人手算了,都是计算机一步出结果.手算的话方法如下.第一问考虑下图中的F(x),待求的式子即是F'(x).第二问利用第一问的结论,答案是3;见下图.
易知收敛域为(-1,1),因为nx^(n-1)=(x^n)的导数,所以∑nx^(n-1)=(∑x^n)的导数,求得和函数为1/(1-x)^2.再问:神人也!哈,请在详细点可否,小弟我可没那么聪明哦再答
再问:给个过程吧。。再答:
根据阿贝尔定理,级数在x=-1处收敛,则适合(-1,3)的一切x使该级数绝对收敛,x=2也在其中.
当然收敛由幂级数收敛判断法则,此幂级数在x=3时收敛,则收敛半径R≤3,在此半径内任何一点都收敛
f(x)=x/(2x^2+7x-4)=(1/9)[1/(2x-1)]+(4/9)[1/(x+4)]=(-1/27){1/[1-(2/3)(x+1)]}+(4/27){1/[1+(1/3)(x+1)]}
在0处泰勒级数收敛半径为pi/2;在0处罗伦级数收敛半径为pi/2再问:pi��ʲô�������������Ŀ����дһ�¹�̺��лл��再答:piΪԲ����f(Z)�ļ���Ϊcos(z
f(x)=∫sintdt/t=∫sintdt/t=∫∑(-1)^n*t^2ndt/(2n+1)!=∑(-1)^n*x^(2n+1)/[(2n+1)(2n+1)!](-∞
http://hiphotos.baidu.com/zjhz8899/pic/item/fd73d4001e22e7277bec2c87.jpeg
R=lim(n->∞)an/a(n+1)=lim(n->∞)1/n!/1/(n+1)!=lim(n->∞)(n+1)=∞
收敛半径R=3-(-1)=4再问:解释一下可以吗?。。再答:条件收敛点只能在收敛域与发散域的分界点上
首先e^z的展开式:e^z=1+z+z^2/2!+z^3/3!+...+z^n/n!+...把z=(z/z-1)代入公式即可得到:e^(z/z-1)=1+(z/z-1)+(z/z-1)^2/2!+..
后项比前项的绝对值的极限=|x|收敛域:|x|再问:麻烦再问一下,答案第三行级数∑(n=1,∞)x^(n+1)为什么等于x^2/(1-x)????再答:首项x^2,公比x的等比级数求和