若n阶方阵a满足A^3=3A(A-E)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:09:02
(A-3E)(A+3E)=E所以A-3E可逆,A-3E的逆矩阵是A+3E
因A^3+2A-3E=0变形A^3+2A=3E即A[1/3(A^2+2E)]=E也就是存在B=1/3(A^2+2E)使得AB=BA=E按定义知A可逆且逆矩阵A^(-1)=1/3(A^2+2E)
证:R(A+3E)+R(A-E)=R(A+3E)+R(E-A)≥R(A+3E+E-A)=R(4E)=n①A²+2A-3E=0(A+3E)(A-E)=0R(A+3E)+R(A-E)≤n②由①、
(A+E)^3=A^3+3A^2+3A+E=0A(A^2+3A+3E)=-E所以A可逆,A^-1=-(A^2+3A+3E)
A^2-3A-2E=OA^2-3A=2EA(A-3E)=2EA*[(A-3E)/2]=E自然A^-1=(A-3E)/2祝学习愉快请别忘记采纳
(E+3A)(E-3A)=E-9A^2=E
A^2=4AA(A-4I)=0A=0orA-4I=0ifA=0A-4I=-4I(A-4I)^(-1)=(-1/4)IifA-4I=0A-5I=-Ithen(A-5I)^(-1)=-IieA-5I可逆
即2A(A-E)-E=A³-E2A(A-E)-E=(A-E)(A²+A+E)有(A-E)(A²-A+E)=-E有(E-A)(A²-A+E)=E所以E-A可逆,并
A^3+A^2-2A=0A^2(A+I)-2A-2I=-2I(A^2-2I)(A+I)=-2I-1/2(A^2-2I)(A+I)=I所以A+I可逆逆阵是-1/2(A^2-2I)
(A-I)r(A-3I)=n是加号连接吧即r(A-I)+r(A-3I)=n因为A≠I,所以A-I≠0,所以r(A-I)>=1所以r(A-3I)
A²-3A-E=0A^2-3A=EA(A-3E)=E因此A可逆,且其逆矩阵为A-3E
1这个A不一定是可逆的.如果不可逆,A^(-1)不存在2跟第一个一样的错误
[证明](方法一:构造法)见下图\x0d\x0d[证明](方法二:利用特征值与特征向量)见下图\x0d\x0d[证明](方法三:利用极小多项式)\x0d因为A满足A2+2A-3E=O,即(A-E)(A
2A-A^3=3EA(2E-A^2)=3EA(2E/3-A^2/3)=E所以,A逆=2/3×E-1/3×A^2
A^2-3A+E=03A-A^2=E(3E-A)A==EA^(-1)=3E-A
(A-E)A=A^2-A=3E,因此(A-E)A/3=E,A-E可逆,其逆为A/3.
要是取巧,你想A=0是可能的,但也不是唯一的解,所以四个答案只有D正确要是正常解题,因为r(A)+r(B)-n
由A^2-A-7E=0得:A(A-1)=7E故A(A-1)的行列式为7而不为0,假如A是不可逆矩阵,则A的行列式为0那么A(A-1)的行列式就为0矛盾,所以A可逆又原式可变为(A+2E)(A-3E)=
选D利用Sylvester不等式rank(A)+rank(B)
用特征值就可以了(A-E)(A-2E)=0所以A的特征值m满足(m-1)(m-2)=0即m=1或2.m总的重数=n设1是A的k重特征值,则2是n-k重A-E的特征值=m-1.所以0是A-E的k重特征值