若f具有一阶连续偏导数,且u=f(x²-y²,e^xy)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:17:47
u=f(x,y,z),y=sinxdu=əf/əx*dx+əf/əy*dy+əf/əz*dzdu/dx=əf/əx+
根据一阶全微分形式不变得dz=d(xf(x^y,e^xy)=f(x^y,e^xy)dx+xd(f(x^y,e^xy))=f(x^y,e^xy)dx+x[f1'd(x^y)+f2'(de^xy)]=f(
∵u=f(x,y,z),y是x的函数,z也是x的函数∴dudx=∂f∂x+∂f∂y+∂f∂z•dzdx∵y=sinx∴dydx=cosx再在方程φ(x2,ey,z)=0两端对x求导,可得φ′1•2x+
∂z/∂x=(∂f(u,v)/∂u)*(∂u/∂x)+(∂f(u,v)/∂v)*(∂v/
z(x)+z(y)=-(f(x)+f(y))/f(z)f(x)=f1(1-z(x)-f2z(x))f(y)=-f1z(y)+f2(1-z(y))f(z)=-f1-f2所以z(x)+z(y)=1+z(x
这是比较简单的求导了,你看一下书,在高数的下册把,多元函数求导中,我给你插图可能看不清,我也不知道怎么弄.下面那个人的解法不对,要是看不清我的插图就看看书就行了.
令u=x^2+y^2,v=xy得∂z/∂x=(∂f/∂u)(∂u/∂x)+(∂f/∂v)(∂
应该等于2xf'(x^2),看成复合函数就行了……
∂w/∂x=f‘1+yz·f’2(f‘1表示对f的第一个变量求偏导,1在下标其余类似)f具有二阶连续偏导数,∂²w/∂x∂z=
再答:绝对正解,正版标答不懂追问,满意采纳
第一种理解法:本题要分清各变量的关系,由题意可知,u是函数,t是中间变量,x与y是自变量.因此x与y之间无函数关系,所以∂y/∂x=0.第二种理解法:对x求偏导时另一个自变量y
令p=[f(x)-e^x]sinyq=-f(x)cosy因为积分与路径无关所以(αp/αy)=(αq/αx)带入化解得:f'(x)+f(x)=e^x解之的f(x)=e^(-∫dx)[c+∫(e^x)*
偏Z比偏Y=xf(x+y,e^xsiny)+xy(f1'+f2'e^xcosy),偏Z比偏x=z=yf(x+y,e^xsiny)+xy(f1'+f2'e^xsiny).
1.(1)au/ax=f1'*(x^2-y^2)'x+f2'*(e^xy)'x=2x*f1'+y(e^xy)*f2'其中,f'1表示对第一个变量求偏导数(x^2-y^2)'x表示对x求偏导数au/ay
令a=x^2-y^2b=e^(xy)f具有一阶连续偏导数f1‘和f2’∂u/∂x=(∂u/∂a)×(∂a/∂x)+(∂
z=f(xlny,x-y)əz/əx=lnyf1′+f2′əz/əy=(x/y)f1′-f2′再问:�жϼ����(n��1����)(-1)^n/���(n(
由于积分与路径无关,2xf(x)=f'(x)+2x则f'(x)-2xf(x)=-2x,一阶线性微分方程,套公式f(x)=e^(∫2xdx)[∫-2xe^(-∫2xdx)dx+C]=e^(x²
再问:请问那个f12的二阶导数是怎么来的啊再答:前面两个都来自f1'对x的偏导数再问:哦再问:再问您一下,还是这道题,先对x再对y求二阶连续偏导怎么做啊再问:u先对x再对y再答:再问:多谢再问:请问最