若A^k=E,A相似与对角阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:43:56
若A^k=E,A相似与对角阵
设n阶方阵中的元素全为1,试求A的特征值,最小多项式.A是否与对角阵相似,若相似求出与其相似的对角阵

参考:特征值为n,0,0,...,0最小多项式:A^2=nA,x^2-nx可对角化相似的对角矩阵diag(n,0,0,...,0)再问:请问怎么用语言来描述A与对角阵相似再答:r(A)=1,则属于特征

设A,B均为N阶矩阵,且AB=BA,证明:如果A,B都相似于对角阵,则存在可逆矩阵P使P^-1AP与P^-1BP均为对角

S^-1AS=C=diag(a1*I1,a2*I2,...,ar*Ir)分为r块,每块特征值相同,Ii都是单位阵SCS^-1B=AB=BA=BSCS^-1,左乘S^-1,右乘S,得CS^-1BS=S^

若4阶矩阵A与B相似,A的特征值为1/2,1/3,1/4,1/5.则行列式│K-E│= K=B的-1次方

A与B相似,则A与B有相同的特征值.所以K的特征值等于A的特征值的倒数2,3,4,5,从而K-E的特征值为1,2,3,4,所以|K-E|=1*2*3*4=24

设A是n阶非0矩阵,如果存在一正整数k使得A^k=0,证明A不可能相似于对角矩阵.

假设A相似于对角矩阵Λ,则由相似的定义有A=P^(-1)ΛP,P可逆所以A^k=(P^(-1)ΛP)^k=P^(-1)Λ^k*P=O所以Λ^k=O即Λ=O从而A=P^(-1)ΛP=O与A是n阶非0矩阵

设A为n阶实矩阵,证明:若A^k=E,则A相似于对角阵

可以用稍微初等一点的技术在复数域上上三角化总是可以的,并且特征值的次序可以任意指定那么就先上三角化到diag{A1,A2,...,Am}+N,每一块Ai都恰有一个特征值,且不同的块对应不同的特征值,N

设A为3阶方阵,已知E-A,E+A,3E-A都不可逆,证明A与对角矩阵相似

矩阵E-A,E+A,3E-A都不可逆,即1,-1,3是A的三个不同的特征根,所以A一定相似于对角阵.经济数学团队帮你解答,请及时采纳.

n阶方阵A有n个不同特征值是A与对角阵相似的什么条件?

充分非必要再问:从前推到后不是必要条件吗?我弄不清什么是充分条件什么是必要条件再答:从前推到后是充分条件,反过来是必要条件

若存在正整数m,使得A^m=E,这里的E为单位矩阵,A为n阶方阵,证明A相似于对角型矩阵

"因为最小多项式肯定整除x^m-1,那么最小多项式没有重根,那么可对角化"对的也可以直接讨论Jordan块,因为J^m是可以具体算出来的再答:我这里写的J代表一个Jordan块

n阶方阵A具有n个不同的特征值是A与对角阵相似的______条件.

由于“n阶方阵A与对角矩阵相似的充要条件A有n个线性无关的特征向量”,而A具有n个不同的特征值,则A一定有n个线性无关的特征向量因此,n阶方阵A具有n个不同的特征值⇒A与对角矩阵相似但反之,不一定成立

关于矩阵性质的证明两个方面.一.一个矩阵与对角阵相似,则该对角阵的对角线元素必为A的特征值二.一个矩阵如果与对角阵相似,

二.一个矩阵如果与对角阵相似,则P不是别的,P矩阵的列向量就是A的特征向量证明:设n阶方阵A与对角矩阵相似,即有P^-1AP=diag(λ1,λ2,...,λn)其中P为可逆矩阵.令P=(α1,α2,

设a为3阶方阵,-2和6是a的特征值,且|e-3a|=0,证明a是可逆阵,且与对角阵相似.

由|E-3A|=0知道|1/3*E-A|=0,根据特征值定义可知1/3是矩阵A的一个特征值.因为3阶矩阵只有3个特征值,所以矩阵A的全部特征值就是-2,6和1/3.因为矩阵的行列式就是它所有特征值的乘

线性代数中,如果矩阵A与一对角阵特征值相同,且二重特征值有两个线性无关的特征向量,能否说明A与对角阵相似?若矩阵B与对角

如果矩阵A与一对角阵特征值相同,且二重特征值有两个线性无关的特征向量,能说明A与对角阵相似.若矩阵B与对角阵特征值相等,但是二重特征值只有一个特征向量,说明B与对角阵不相似,B只能化简为约当标准形了.

A^m=A,证明A与对角矩阵相似

注意到f(λ)=λ^m-λ=λΠ_{k=0}^{m-2}(λ-ζ_{m-1}^k)是A的0化多项式,其中ζ_{m-1}=exp{2πi/(m-1)}.而λ,λ-ζ_{m-1}^k(k=0,1,...,

若3阶方阵A的特征值为-1,0,1,则矩阵B=A³-A+2E的相似对角矩阵为?

B的特征值,2,2,2再答:所以B的相似为diag(2,2,2)再问:B的特征值怎么算再答:带进去啊再答:A的特征值带入A

设A是n阶方阵,若有正整数k,使得A^k=E,证明A相似于对角矩阵

因为A^k=E所以A可逆,即A的特征根非零.如果A不可对角化,根据亚当标准型,存在两个非零向量x1,x2,及一个非零特征根a,使得:Ax2=ax2,Ax1=ax1+x2.则:A^2x1=A(ax1+x

线性代数:相似已知矩阵A与对角矩阵D相似,则A^2=D=1 0 00 -1 00 0 -1A.AB.DC.ED.-E需要

C因为A相似于D,所以(QT)AQ=DA=QD(QT)A^2=QD(QT)QD(QT)=QD^2(QT)D的特征值为1,-1,-1所以D^2特征值为1,1,1

若三阶矩阵A和对角阵相似,则A^2014=

答案是A,分析过程如图.经济数学团队帮你解答,请及时采纳.谢谢!