ln^2(x √1 x^2)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:17:19
∫ln(1+x²)dx=x•ln(1+x²)-∫xdln(1+x²)=xln(1+x²)-∫x•1/(1+x²)•
原式=xln(1+x)-∫xd[ln(1+x)]dx=xln(1+x)-∫2[x/(1+x)]dx=xln(1+x)-2∫[1-1/(1+x)]dx=xln(1+x)-2x+2arctanx+C
∫ln(x+√(1+x^2))dxletx=tanadx=(seca)^2da∫ln(x+√(1+x^2))dx=∫(seca)^2ln(tana+seca))da=∫ln(tana+seca))d(
∫ln(x+√(1+x^2))dx=xln(x+√(1+x^2)-∫xd(ln(x+√(1+x^2))[ln(x+√1+x^2)]'=[1+x/√(1+x^2)]/(x+√(1+x^2))=1/√(1
∫dx/x[根号1-(ln^2)x]=∫d(lnx)/[根号1-(ln^2)x]=∫dt/[根号1-t^2](设t=lnx)=arcsint+C=arcsin(lnx)+C
∫dx/x(1+ln²x)=∫[1/(1+ln²x)]d(lnx)=arctan(lnx)+C.
∫dx/[x√(1-(lnx)^2)]=∫dlnx/√(1-(lnx)^2)=arcsin(lnx)+C
用分部积分法,(uv)'=u'v+uv',设u=ln(1+x^2),v'=1,u'=2x/(1+x^2),v=x,原式=xln(1+x^2)-2∫x^2dx/(1+x^2)=xln(1+x^2)-2∫
原式=∫(1+ln^2x)d(lnx)令lnx=u上式化为∫(1+u^2)du=u+u^3/3+c=lnx+(lnx)^3/3+c
y=ln√(1-2x)dy/dx=[1/√(1-2x)]d/dx{√(1-2x)}=[1/√(1-2x)].-2/[2√(1-2x)]=-1/(1-2x)z=1-2xd/dx{√(1-2x)}=d/d
∫x*ln(1+x^2)dx=1/2积分:ln(1+x^2)d(1+x^2)令1+x^2=t=1/2积分:lntdt=1/2[tlnt-积分:td(lnt)]=1/2[tlnt-积分:dt]=1/2[
运用分部积分法,如下2张图:
很高兴为您解答,解题步骤如下, 或者如果不要过程,我们可以:
ln(x^2-1)=ln(x+1)+ln(x-1)∫ln(x^2-1)dx=∫ln(x+1)d(x+1)+∫ln(x-1)d(x-1)分部积分:原式=(x+1)ln(x+1)-∫(x+1)d(ln(x
∫ln(x+√(1+x^2))dx=xln(x+√(1+x^2)-∫xd(ln(x+√(1+x^2))[ln(x+√1+x^2)]'=[1+x/√(1+x^2)]/(x+√(1+x^2))=1/√(1
平方在哪里再问:在后面的x上再答:
∫1+x^2ln^2x/xlnxdx=∫1/xlnxdx+∫xlnxdx分开积分就行了.