线性代数aij=Aij
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:59:25
行列式等于0.将所有列都加到第1列,则第1列元素全等于0,故行列式等于0
n=2的时候直接把A*写出来验证n>2的时候看A*的秩就行了,A^T=A*=>rank(A^T)=rank(A*),只有零矩阵和满秩矩阵才满足这一点.还有一种方法是利用(A*)*=|A|^{n-2}A
|A|=1*2.*3=6,trA=1+2+3=6λ(A*)=|A|/λ=6.3.2即A*有3个不同特征值,可以对角化,即A*~ΛA11+A22+A33=trA*=trΛ=2+3+6=11
行列式定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和a21A21+a22A22+a23A23=|A|=2推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和
由于方阵A:a11a12...,a1n的伴随矩阵A*为A11A21.An1a21a22...,a2nA12A22.An2..........an1an2...,annA1nA2n.Ann由于aij=A
由条件Aij+aij=0(i,j=1,2,3),可知A+A*T=0,其中A*为A的伴随矩阵,从而可知|A*|=|A*T|=|A|3-1=(-1)3|A|,所以|A|可能为-1或0.但由结论r(A*)=
a11+1a12+2a13+3|B|=a21+1a22+2a23+3a31+1a32+2a33+3将这个行列式拆成2³个行列式的和,只有4个不为0(还有4个有对应列成比例,所以为0)a11a
由已知,A*=A^T所以AA*=AA^T=|A|E两边取行列式得|AA^T|=||A|E|所以|A|^2=|A|^3|E|=|A|^3.(*)又因为A≠0,所以存在aij≠0由等式AA^T=|A|E知
因为aij=Aij,所以|A|=|A*|由A^(-1)=A*/|A|得|A|A^(-1)=A*两边取行列式|A|³|A^(-1)|=|A*||A|³/|A|=|A||A|=1
由A正交得AA'=E.即A^(-1)=A'.等式两边求行列式得|A|^2=1.由已知A的行列式大于零,所以|A|=1.所以有AA*=|A|E=E.所以A^(-1)=A*.所以A*=A'.即Aij=ai
对比A^T的各个元素即得Aij=aij再问:Aij是代数余子式,而aij只是一个数,它们的计算结果明显不同,还是不懂,能解释一下吗再答:代数余子式是一个数值
将D按第1列分拆,其中一列为r,0,...,0D=-rA11+D1再将D1按第2列分拆D=-rA11-rA22+D2如此下去得D=|aij|-r(A11+A22+...+Ann)如果没有其他条件,只能
负因为球列数为3-1的3次方为负的
点击图上放大后再看注意: A*的第j列的元素就是A的第j行的元素的代数余子式. 希望对你有用.
由行列式的基本性质和题意得:|3a1-2β,a2,a3,a4|=3|a1,a2,a3,a4|-2|β,a2,a3,a4|=6-2=4再问:请问为什么|β,a2,a3,a4|=1呢?再答:你把代数余子式
由已知,|A|=2*3*4=24所以A*的特征值为12,8,6所以A11+A22+A33=12+8+6=26
求和号呢?再问:不明白.我书上看到的D=aij*Mij?大学学的文科,没学过这个.自己看书不怎么明白.再答:挑出行列式的一行或一列,用该行或该列的每个数乘以该数的代数余子式,对其求和再问:那这式子什么
所求行列式=012…n-2n-1101…n-3n-2210…n-4n-3……………n-2n-3n-4…01n-1n-2n-3…10rn-r(n-1),r(n-1)-r(n-2),…,r2-r1012…
所求行列式=012...n-1101...n-2210...n-3......n-1n-2...0依次作:ri-r(i+1),i=1,2,...,n-1-111...1-1-11...1-1-1-1.
(A)=1因为,从第i=2行开始,每行减ai1*第1行都将变为0,也就是说,所有的行向量都与第一行的行向量成比例