ln(x 根号下1 x的平方)是奇函数还是偶函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:45:12
首先我们知道,一个数的原函数和它的反函数奇偶性相同,所以此题如果可以证明函数的反函数是奇函数即可.求反函数过程如下:由原式可知,e的y次方=x+根号下(x²+1)即:e的y次方-x=根号下(
将x换成-x,代入,ln(x+根号下(x^2+1)加上原式,会得到两者之和为ln(x^2+1-x^2)=0,得到为奇函数
x²-1>=0,1-x²>=0所以x=1或x=-1此时y=0,所以f(-x)=f(x)=0=-f(x)所以是奇也是偶
对的因为1/[x+√(x²+1)]=[x+√(x²+1)]^(-1)所以ln[x+√(x²+1)]^(-1)=-ln[x+√(x²+1)]再问:=[x+√(x&
f(x)=x分之1ln(根号下x的平方-3x+2)+根号下-x的平方-3x+4满足:1.x²-3x+2>0(x-1)(x-2)>0x>2或x
y'=1/[x+√(1+x²)]*[x+√(1+x²)]'=1/[x+√(1+x²)]*[1+2x/2√(1+x²)]=1/[x+√(1+x²)]*[
y=(1+x²)*ln[x+√(1+x²)]那么求导得到y'=(1+x²)'*ln[x+√(1+x²)]+(1+x²)*ln[x+√(1+x²
(x+根号下x的平方+1)>0(根号下x的平方+1)>0x>=0y=ln(x+根号下x的平方+1)的定义域:[0,+无穷)再问:其实X为负数不是也可以吗?X为负数也可以满足(x+根号下x的平方+1)>
∫1/[x√(1-ln²x)]dx=∫1/√(1-ln²x)d(lnx)=arcsin(lnx)+C公式:∫dx/√(a²-x²)=arcsin(x/a)+C
奇函数的意义f(-x)=-f(x)所以答案是D
根据反函数的定义,函数y=f(x)为单调连续函数,则它的反函数x=g(y),它也是单调连续的. 为此我们可给出反函数的求导法则: 定理:若x=g(y)是单调
是y=ln[x√(1+x²)]?y'=[x√(1+x²)]'/[x√(1+x²)]={√(1+x²)+x*(1+x²)'/[2√(1+x²)
f(x)=ln(√(x^2+x+1)-√(x^2-x+1))将分子有理化f(x)=ln((2x)/(√(x^2+x+1)+√(x^2-x+1)));f(x)=ln((2x)/(√((x+1/2)^2+
函数f(x)=1/ln(x-2)+根号下4-x的定义域由{x-2>0,{ln(x-2)≠0,{4-x>=0,确定.依次解得{x>2,{x≠3,{x
设x+根号下(1+x的平方)=uy‘=u’/uu'=1+[根号下(1+x的平方)]'令根号下(1+x的平方)=v则u‘=1+v’令1+x的平方=h,则h’=2xv‘=h'/2√h=2x/2√1+x
dy=y'dx=(x/(1+x^2)-e^(-x))dx
因为f(x)=ln(x+【根号下x的平方+1】)所以f(-x)=ln(-x+【根号下x的平方+1】)f(x)+f(-x)=ln(x+【根号下x的平方+1】)+ln(-x+【根号下x的平方+1】)=ln
定义域为Rf(-x)=ln(-x+√(x^2+1))-f(x)=-ln(x+√(x^2+1))=ln(1/x+√(x^2+1)),然后通分上下同乘x-√(x^2+1)得=ln(-x+√(x^2+1))
导数为(x+根号下(1+x的平方)分之一上下同乘(根号下(1+x的平方)-x)结果为根号下(1+x的平方)-x
y=5ln(x²+5x)-1∵零和负数无对数∴x²+5x=x(x+5)>0∴定义域x<-5,或x>0∵x²+5x=(x+5/2)²-25/4能够取到所有正数∴5