11x 3y=9

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:58:37
11x 3y=9
已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,则x4+x3y+x2y2+xy3+y4=______

x2y+xy2=xy(x+y)=66,设xy=m,x+y=n,由xy+x+y=17,得到m+n=17,由xy(x+y)=66,得到mn=66,∴m=6,n=11或m=11,n=6(舍去),∴xy=m=

已知x+y=5,x2+y2=13,求代数式x3y+2x2y2+xy3的值.

x3y+2x2y2+xy3=xy(x2+2xy+y2)=xy(x+y)2,∵x+y=5,∴(x+y)2=25,x2+y2+2xy=25,∵x2+y2=13,∴xy=6,∴xy(x+y)2=6×25=1

已知x-y=1,求代数式x4-xy3-x3y-3x2y+3xy2+y4.

原式=(x4-xy3)+(y4-x3y)+(3xy2-3x2y)=x(x3-y3)+y(y3-x3)+3xy(y-x)=(x3-y3)(x-y)-3xy(x-y)=(x-y)(x3-y3-3xy)=(

设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则dydx|

方程两边对x求导得2x+y′x2+y=3x2y+x3y′+cosxy′=2x−(x2+y)(3x2y+cosx)x5+x3y−1由原方程知,x=0时y=1,代入上式得y′|x=0=dydx|x=0=1

计算:(2x3y)

原式=4x29y2•27y364x3•4xy=34x2.故答案为34x2.

关于反应类型的题目有3种分子,X2,Y2,X3Y那么有个反应:4X2+Y2=X3Y+Y2这是什么反映类型

反应前XY均为0价,反应后化合价有变化,四氧化还原反应.提一句,4X2+Y2=X3Y+Y2去掉Y2的话是4X2=X3Y,这是不可能的,元素本身发生了变化,应该是核反应

已知x+y=4,x2+y2=14,求x3y-2x2y2+xy3的值.

∵x+y=4,∴(x+y)2=16,∴x2+y2+2xy=16,而x2+y2=14,∴xy=1,∴x3y-2x2y2+xy3=xy(x2-2xy+y2)=14-2=12.

若x+y=-1,则x4+5x3y+x2y+8x2y2+xy2+5xy3+y4的值等于(  )

原式=x4+x3y+4x3y+x2y+4x2y2+4x2y2+xy2+4xy3+xy3+y4,=x3(x+y)+4x2y(x+y)+xy(x+y)+4xy2(x+y)+y3(x+y),=-x3-4x2

有这样一道题,计算(2x4-4x3y-x2y2)-2(x4-2x3y-y3)+x2y2的值,其中x=0.25,y=-1;

(2x4-4x3y-x2y2)-2(x4-2x3y-y3)+x2y2=2x4-4x3y-x2y2-2x4+4x3y+2y3+x2y2=2y3,因为化简的结果中不含x,所以原式的值与x值无关.

已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,求x4+x3y+x2y2+xy3+y4的值.

方程ax^2+bx+c=0,判断这个方程有没有实数根,有几个实数根,就要用ΔΔ=b^2-4ac若Δ<0,则方程没有实数根Δ=0,则方程有两个相等实数根,也即只有一个实数根Δ>0,则方程有两个不相等的实

已知x+y=5,xy=3,求代数式x3y-2x平方y平方+xy3

已知x+y=5,xy=3,代数式x3y-2x平方y平方+xy3=xy(x²-2xy+y²)=xy(x-y)²=3×[(x+y)²-4xy]=3×(25-12)=

在曲面z=x3y上求一点,使这点处的法线垂直于平面6x-8y+z+9=0,并写出该点处法线和切平面的方程.

曲面x³y-z=0,分别对x、y、z求偏导得法向量(3x²y,x³,1),垂直于平面6x-8y+z+9=0的向量是(6a,-8a,a),所以a=1,解得x=-2,y=1/

已知:| x + y + 1| +| xy - 3 | = 0,求代数式xy3 + x3y 的值.

∵|x+y+1|≥0,|xy-3|≥0|x+y+1|+|xy-3|=0,∴x+y+1=0,即x+y=-1xy=3xy3+x3y=xy(x²+y²)=yx[(x+y)²-2

若x-y=6,xy=17/36,则代数式X3y-2x2y2=xy3的值为__ X后面的数字为X的平方

应该是X3y-2x2y2+xy3原式=x3y-2x2y2+xy3=xy(x2-2xy+y2)=xy(x-y)2=17/36*6=17麻烦采纳,谢谢!

已知x+y=4,xy=2,则x3y+x2y2+xy3的值:

x+y=4,xy=2后者平方后二式相加再加后者平方

已知x=√3-√2,y=√3+√2,求x3y+xy3

x3y+xy3=xy(x^2+y^2)=(√3-√2)(√3+√2)((√3-√2)^2)+(√3-√2)^2)=1*(3-2√6+2+3+2√6+2)=10

已知x-y=3,x2+y2=13,求x3y-8x2y2+xy3的值.

(x-y)2=x2-2xy+y2=9,当x2+y2=13时,13-2xy=9,解得xy=2.当xy=2,x2+y2=13时,x3y-8x2y2+xy3=xy(x2-8xy+y2)=2×(13-8×2)

已知x+y=3,x2+y2-3xy=4,则x3y+xy3的值为______.

∵x+y=3,∴(x+y)2=9,即x2+y2+2xy=9①,又x2+y2-3xy=4②,①-②,得5xy=5,xy=1.∴x2+y2=4+3xy=7.∴x3y+xy3=xy(x2+y2)=7.故答案

已知x-y=l,xy=2,求x3y-2x2y2+xy3的值.

∵x-y=l,xy=2,∴x3y-2x2y2+xy3=xy(x2-2xy+y2)=xy(x-y)2=2×1=2.

当x-y=1时,那么x4-xy3-x3y-3x2y+3xy2+y4的值是(  )

x4-xy3-x3y-3x2y+3xy2+y4=(x4-xy3)+(y4-x3y)+(3xy2-3x2y)=x(x3-y3)+y(y3-x3)+3xy(y-x)=(x3-y3)(x-y)-3xy(x-