级数收敛范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:32:28
级数收敛范围
级数绝对收敛

A的级数单项取绝对值之后变为1/n,是指数为1的调和级数发散(调和级数1/n^p,指数p需大于1才收敛)B的级数单项取绝对值之后变为1/lnn>1/n>0,由比较判别法,所以发散C的级数单项取绝对值之

用柯西准则证明级数收敛

这个级数一般不采用柯西准则,用比值判别法合适:由    lim(n→∞){[10^(n+1)]/[(n+1)!]}/(10^n/n!)=lim(n→∞)[10/(n+1)]=0根据比值判别法得知该级数

证明以下级数收敛 

这个需用Cauchy收敛准则来证明:对任意的epsilon>0,取N=[1/epsilon]+1,则对任意n>N及任意的正整数p,有   |∑(1≤k≤p)[1/(n+k)²]|  ≤∑(1

高等数学,交错级数收敛

根据交错级数莱布尼兹判别法,这个级数的一般项的绝对值趋于0,并且一般项的绝对值是单调递减的,故这个交错级数是收敛的以下是莱布尼兹定理的介绍 莱布尼茨定理 若一交错级数的项的绝对值单调趋于零,则这级数收

条件收敛级数与绝对收敛级数的一个问题

①前一个级数的绝对值级数【1/(n*n)】是收敛的,故前一个级数绝对收敛②后一个级数本身是收敛的,但是它的绝对值级数【1/n】是发散的,故后一个级数是条件收敛①②都是根据条件收敛、绝对收敛的定义得到的

高数 无穷级数 级数收敛问题

再问:不清楚能发张清楚的么再答:

为什么说级数绝对收敛,级数必定收敛?

浅显易懂的说明?你想意会一下吗?好好理解一下书上关于级数的基本概念和判定,不难“意会”我叙述两种方法,都是书上的,个人认为方法②比较形象.严格东西如果笼统的说,其实相当于什么都没说.①用无穷级数的柯西

关于级数收敛的充要条件

CA是必要条件B只能针对正项级数D是充分条件

级数的绝对收敛

答案a>1由于a>0,故1+a^n>0.加绝对值无所谓①01通项极限为0.用根值判别法,对通项1/(1+a^n)开n次方,结果是1/a,满足收敛条件,收敛半径是a.故答案就是a>1这是我自己的方法,这

证明级数收敛.

交错项级数判断敛散性,用莱布尼兹判别法:令1/√n=x显然e^x-1-x求导后可以看出它是根据x的增大而增大,由于同增异减,当n增大时,x减小,故里面也在减小,且极限为0满足莱布尼兹定理,所以原级数收

级数、条件收敛、收敛半径、高等数学

R=3换言之,级数∑(Anx^n)在x=3处条件收敛,则级数在(-3,3)内收敛,且绝对收敛.当|x|>3时,级数一定发散,否则由阿贝儿定理,x=3处是绝对收敛的,矛盾.所以绝对收敛域与发散域在x=±

级数收敛

一.易见a_{n+1}/S_n>1/x在区间[S_n,S_{n+1}]上的积分,两边求和,就得到左边的级数大于等于1/x在a_1到正无穷上的积分,当然是发散的.二.用Dirichlet判别法.

级数Un^2收敛,证明Un收敛

这是错的.比如Un=1/n

级数:绝对收敛+条件收敛=条件收敛,为什么?

首先,收敛是肯定的.那就不是条件就是绝对了,如果是绝对收敛,那么绝对1+条件1=绝对2条件1=绝对2-绝对1事实上绝对收敛的无论是级数,积分还是什么相加减的话结果都是依旧绝对收敛的,所以矛盾了.只能是